James-Webb-Telskop bestätigt die Genauigkeit der von Hubble gemessenen Expansionsrate des Universums und vertieft das Geheimnis der konstanten Spannung am Hubble

Die Geschwindigkeit, mit der sich das Universum ausdehnt, bekannt als Hubble-Konstante, ist einer der grundlegenden Parameter für das Verständnis der Entwicklung und des endgültigen Schicksals des Kosmos. Es besteht jedoch ein anhaltender Unterschied, der als „Hubble-Spannung“ bezeichnet wird, zwischen dem Wert der Konstante, der mit einer Vielzahl unabhängiger Entfernungsindikatoren gemessen wird, und dem Wert, der aus dem Nachglühen des Urknalls vorhergesagt wird.

Kombinierte Beobachtungen der NIRCam (Near-Infrared Camera) der NASA und der WFC3 (Wide Field Camera 3) von Hubble zeigen die Spiralgalaxie NGC 5584, die 72 Millionen Lichtjahre von der Erde entfernt liegt. Zu den leuchtenden Sternen von NGC 5584 gehören pulsierende Sterne, sogenannte Cepheid-Variablen, und Supernovae vom Typ Ia, eine besondere Klasse explodierender Sterne. Astronomen nutzen Cepheid-Variablen und Typ-Ia-Supernovae als zuverlässige Entfernungsmarker, um die Expansionsrate des Universums zu messen.
Credit: NASA, ESA, CSA, and A. Riess (STScI).

Das James-Webb-Weltraumteleskop der NASA bietet neue Möglichkeiten, einige der stärksten Beobachtungsbeweise für diese Spannung zu untersuchen und zu verfeinern. Nobelpreisträger Adam Riess von der Johns Hopkins University und dem Space Telescope Science Institute stellt die jüngste Arbeit von ihm und seinen Kollegen vor, bei der er Webb-Beobachtungen nutzte, um die Präzision lokaler Messungen der Hubble-Konstante zu verbessern.

„Hatten Sie jemals Schwierigkeiten, ein Schild zu erkennen, das sich am Rande Ihres Sichtfelds befand? Was sagt es? Was bedeutet das? Selbst mit den leistungsstärksten Teleskopen erscheinen die „Zeichen“, die Astronomen lesen wollen, so klein, dass auch wir Schwierigkeiten haben.

„Das Zeichen, das Kosmologen lesen wollen, ist ein kosmisches Geschwindigkeitsbegrenzungszeichen, das uns sagt, wie schnell sich das Universum ausdehnt – eine Zahl, die Hubble-Konstante genannt wird.“ Unser Zeichen ist in die Sterne entfernter Galaxien eingeschrieben. Die Helligkeiten bestimmter Sterne in diesen Galaxien verraten uns, wie weit sie entfernt sind und wie lange dieses Licht somit gereist ist, um uns zu erreichen, und die Rotverschiebungen der Galaxien verraten uns, wie stark sich das Universum in dieser Zeit ausgeweitet hat, und verraten uns damit die Expansionsrate.
„Eine besondere Klasse von Sternen, die Cepheid-Variablen, liefert uns seit über einem Jahrhundert die genauesten Entfernungsmessungen, weil diese Sterne außerordentlich hell sind: Es handelt sich um Überriesensterne mit der hunderttausendfachen Leuchtkraft der Sonne.“ Darüber hinaus pulsieren sie über einen Zeitraum von Wochen (das heißt, sie vergrößern und verkleinern sich), was ihre relative Leuchtkraft anzeigt. Je länger die Periode, desto heller sind sie. Sie sind das Goldstandardwerkzeug zur Messung der Entfernungen von Galaxien, die hundert Millionen oder mehr Lichtjahre entfernt sind, ein entscheidender Schritt zur Bestimmung der Hubble-Konstante. Leider sind Sterne in Galaxien von unserem entfernten Standpunkt aus auf engstem Raum zusammengedrängt und daher fehlt uns oft die Auflösung, sie von ihren Nachbarn in der Sichtlinie zu trennen.

„Eine wichtige Begründung für den Bau des Hubble-Weltraumteleskops war die Lösung dieses Problems. Vor dem Hubble-Start im Jahr 1990 und den anschließenden Cepheid-Messungen war die Expansionsrate des Universums so ungewiss, dass die Astronomen nicht sicher waren, ob sich das Universum seit 10 oder 20 Milliarden Jahren ausdehnt. Das liegt daran, dass eine schnellere Expansionsrate zu einem jüngeren Alter des Universums führt und eine langsamere Expansionsrate zu einem höheren Alter des Universums. Hubble verfügt über eine bessere Auflösung im sichtbaren Wellenlängenbereich als jedes bodengestützte Teleskop, da es sich über den Unschärfeeffekten der Erdatmosphäre befindet. Dadurch kann es einzelne Cepheid-Variablen in Galaxien identifizieren, die mehr als hundert Millionen Lichtjahre entfernt sind, und das Zeitintervall messen, in dem sie ihre Helligkeit ändern.

„Allerdings müssen wir die Cepheiden auch im nahen Infrarotbereich des Spektrums beobachten, um das Licht zu sehen, das den dazwischenliegenden Staub unbeschadet durchdringt. (Staub absorbiert und streut blaues optisches Licht, lässt entfernte Objekte schwach erscheinen und täuscht uns vor, sie seien weiter entfernt als sie sind.) Leider ist Hubbles Rotlichtsicht nicht so scharf wie seine Blaulichtsicht, sodass das Licht der Cepheid-Sterne, das wir dort sehen, mit anderen Sternen in seinem Sichtfeld vermischt ist. Wir können die durchschnittliche Mischungsmenge statistisch auf die gleiche Weise erklären, wie ein Arzt Ihr Gewicht ermittelt, indem er das durchschnittliche Gewicht der Kleidung vom Messwert auf der Waage abzieht. Dies führt jedoch zu einer Verzerrung der Messungen. Die Kleidung einiger Menschen ist schwerer als die anderer.

„Die scharfe Infrarotsicht ist jedoch eine der Superkräfte des James-Webb-Weltraumteleskops. Mit seinem großen Spiegel und seiner empfindlichen Optik kann er das Licht der Cepheiden problemlos und mit geringer Überblendung von benachbarten Sternen trennen. Im ersten Jahr der Webb-Operationen mit unserem General Observers-Programm 1685 sammelten wir Beobachtungen von Cepheiden, die Hubble auf zwei Stufen entlang der sogenannten kosmischen Distanzleiter gefunden hatte. Der erste Schritt besteht darin, Cepheiden in einer Galaxie mit bekannter geometrischer Entfernung zu beobachten, die es uns ermöglicht, die wahre Leuchtkraft der Cepheiden zu kalibrieren. Für unser Programm ist diese Galaxie NGC 4258. Der zweite Schritt besteht darin, Cepheiden in den Wirtsgalaxien der jüngsten Supernovae vom Typ Ia zu beobachten. Die Kombination der ersten beiden Schritte überträgt Kenntnisse über die Entfernung zu den Supernovae, um ihre wahre Leuchtkraft zu kalibrieren. Schritt drei besteht darin, die weit entfernten Supernovae zu beobachten, bei denen die Expansion des Universums offensichtlich ist und durch Vergleich der Entfernungen gemessen werden kann, die aus ihrer Helligkeit und den Rotverschiebungen der Supernova-Wirtsgalaxien abgeleitet werden. Diese Abfolge von Schritten wird als Distanzleiter bezeichnet.

„Wir haben kürzlich unsere ersten Webb-Messungen aus den Schritten eins und zwei erhalten, die es uns ermöglichen, die Entfernungsleiter zu vervollständigen und mit den vorherigen Messungen mit Hubble zu vergleichen (siehe Abbildung). Webbs Messungen haben das Rauschen bei den Cepheid-Messungen aufgrund der Auflösung des Observatoriums drastisch reduziert.“ Wellenlängen im nahen Infrarotbereich. Von einer solchen Verbesserung träumen Astronomen! Auf den ersten beiden Stufen haben wir mehr als 320 Cepheiden beobachtet. Wir haben bestätigt, dass die früheren Messungen des Hubble-Weltraumteleskops genau waren, wenn auch mehr Rauschen. Wir haben mit Webb auch vier weitere Supernova-Kandidaten beobachtet und sehen ein ähnliches Ergebnis für die gesamte Stichprobe.

Quelle

Schreibe einen Kommentar