Archiv der Kategorie: Biologie

Der Untergang des Riesenaffen Gigantopithecus blacki

Abstrakt
Der größte Primat aller Zeiten und eine der größten der südostasiatischen Megafauna, Gigantopithecus blacki1, überlebte in China etwa 2,0 Millionen Jahre lang bis zum späten Mittelpleistozän, als er ausstarb2,3,4. Sein Untergang ist rätselhaft, wenn man bedenkt, daß er einer der wenigen asiatischen Menschenaffen war, die in den letzten 2,6 Millionen Jahren ausgestorben sind, während andere, darunter der Orang-Utan, bis heute überlebt haben5. Die Ursache für das Verschwinden von G. blacki bleibt ungeklärt, könnte aber Aufschluß über die Widerstandsfähigkeit der Primaten und das Schicksal der Megafauna in dieser Region geben6. Hier haben die Forscher drei multidisziplinäre Analysen – Zeitablauf, vergangene Umgebungen und Verhalten – auf 22 Höhlen in Südchina angewendet. Sie haben 157 radiometrische Alter aus sechs Datierungstechniken verwendet, um einen Zeitplan für das Ableben von G. blacki zu erstellen. Sie zeigen, daß die Umwelt vor 2,3 Millionen Jahren ein Mosaik aus Wäldern und Gräsern war, das ideale Bedingungen für gedeihende G. blacki-Populationen bot. Kurz vor und während des Aussterbefensters vor 295.000 bis 215.000  Jahren kam es jedoch aufgrund der zunehmenden Saisonalität zu einer erhöhten Umweltvariabilität, die zu Veränderungen in den Pflanzengemeinschaften und einer Zunahme offener Waldumgebungen führte. Obwohl es seinem nahen Verwandten Pongo weidenreichi gelang, seine Ernährungspräferenzen und sein Verhalten an diese Variabilität anzupassen, zeigte G. blacki Anzeichen von chronischem Stress und schrumpfenden Populationen. Letztendlich führte sein Anpassungskampf zum Aussterben des größten Primaten, der jemals auf der Erde gelebt hat.

Kerninhalt
Unser derzeitiges Verständnis von Gigantopithecus blacki beruht auf Höhlenablagerungen des frühen bis mittleren Pleistozäns in Südchina zwischen dem Jangtsekiang und dem Südchinesischen Meer (Abb. 1 und Abschnitt 1 mit ergänzenden Informationen). Diese Pongine7 gilt als Schlüsselmitglied der früh- bis mittelpleistozänen Faunenzonen Gigantopithecus–Sinomastodon und Stegodon–Ailuropoda im (sub)tropischen Ostasien, von etwa 2,0 Millionen Jahren (Ma) bis 330 Tausend Jahren (ka) 2,3 ,8,9. Er ist bekannt für seine ungewöhnlich großen Backenzähne, seine atypische Schmelzdicke, seine geschätzte Körpergröße von etwa 3 m und sein Gewicht von 200–300 kg und ist damit der größte Primat, der jemals auf der Erde gelebt hat4. Trotz 85 jähriger Suche beschränkt sich der Fossilienbestand von G. blacki auf vier Mandibeln und fast 2.000 isolierte Zähne ohne postkranielle Beweise4. Seine erste Entdeckung in einer Apotheke in Hongkong als „Drachenzahn“1 löste eine Suche nach den ersten In-situ-Funden aus10 (Weiterführende Abbildung 1f) und gipfelte in der Entdeckung mehrerer Höhlenstandorte in zwei Hauptgebieten, Chongzuo und Bubing Becken, in der ZAR-Provinz Guangxi4. Diese Stätten enthalten entscheidende Beweise für sein Überleben und seinen späteren Untergang.

Fig. 1: Die Verortung der Studiengebiete dieser Forschungsergebnisse.

a–c, Die Lage von Südchina, der ZAR-Provinz Guangxi und der Stadt Nanning (a), wobei die Lage des Chongzuo-Untersuchungsgebiets durch ein großes Kästchen (b) und das Bubing-Becken-Untersuchungsgebiet durch ein kleineres Kästchen markiert ist ( C). b, Die Lage der 16 analysierten Höhlenstandorte im Chongzuo-Untersuchungsgebiet. c, Die Lage der sechs Höhlen, die im Untersuchungsgebiet des Bubing-Beckens analysiert wurden, einschließlich sowohl G. blacki-tragender als auch nicht-G. blacki-haltiger Höhlen. Blacki-haltige Höhlen aus beiden Regionen.

Nur sehr wenige dieser G. blacki-Standorte wurden mit mehr als einer radiometrischen Technik datiert; Daher bleibt der Zeitpunkt des Aussterbens ungewiss11. Die aktuelle Zeitspanne für sein Vorkommen liegt zwischen 2,2 Ma (Baikong-Höhle12) und 420–330 ka (Hejiang-Höhle9). Während dieser Zeit erfuhr G. blacki morphologische Veränderungen, einschließlich einer Zunahme der Zahngröße13 und der Zahnkomplexität9, was offenbar auf eine Ernährungsumstellung als Reaktion auf den ökologischen Druck hindeutet13. Rekonstruktionen der Ernährung von G. blacki auf der Grundlage der Zahnanatomie weisen auf einen spezialisierten Pflanzenfresser mit Anpassungen für den Verzehr abrasiver Nahrung14,15, starkes Kauen faseriger Nahrung16,17 und eine fruchtreiche Ernährung6,18 hin. Das vielfältige Waldökosystem zur Zeit von Baikong war in der Lage, die Biomasse mehrerer Primatengemeinschaften4 in einem weiten Gebiet in den Provinzen Guangxi, Guizhou, Hainan und Hubei zu unterstützen19. Zur Zeit von Hejiang war das Verbreitungsgebiet von G. blacki jedoch drastisch auf nur noch Guangxi9,13 zurückgegangen. Die Gründe für diesen dramatischen Rückgang und das letztendliche Aussterben sind nach wie vor heftig umstritten4, da es an einem regionalen Ansatz, einer Konzentration auf einzelne Standorte und Methoden und dem Fehlen von Verhaltens-4 und Umweltbeweisen20 mangelt.

Um die möglichen Ursachen für das Aussterben von G. blacki zu identifizieren, haben die Wissenschaftler einen regionalen Ansatz auf 22 Höhlen in Chongzuo und Bubing Basin angewendet, die entweder G. blacki-tragend (11) oder nicht-G. blacki-haltig waren. Blacki-haltige (11) Höhlenablagerungen (Erweiterte Daten, Abb. 1 und 2 und Ergänzende Informationen, Abschnitte 2 und 3). Mithilfe einer Kombination aus früheren Ausgrabungen (1999–2016) und neu entdeckten Höhlen (2017–2020) identifizierten und beprobten die Forscher fossile Brekzien für Datierungen, Paläoklima-Proxies und Verhaltensanalysen. Sie haben sechs unabhängige Datierungstechniken auf die Sedimente (Post-Infrarot-Infrarot-stimulierte Lumineszenz (pIR-IRSL), optisch stimulierte Lumineszenz (OSL), Elektronenspinresonanz (ESR) auf Quarz und U-Serie auf Speläothem) und Fossilien (U-Infrarot-stimulierte Lumineszenz) angewendet. Reihen zu Zähnen, gekoppelt US-ESR), um einen Bayes’schen modellierten Altersbereich für jeden Standort zu bestimmen (Ergänzende Informationen, Abschnitte 4–8), die dann weiter modelliert wurden, um ein regionales Aussterbefenster (EW) bereitzustellen. Sie haben Pollen-, Holzkohle-, paläontologische, stabile Isotopen- und mikrostratigraphische Analysen auf die Sedimente und Fossilien angewendet, um die früheren Umgebungen zu rekonstruieren (Ergänzende Informationen, Abschnitte 3 und 10–12). Schließlich haben wir eine Spurenelement-, stabile Isotopen- und Dental-Microwear-Texturanalyse (DMTA) auf die Zähne von G. blacki und den engsten Verwandten von Pongo weidenreichi angewendet, um etwaige Veränderungen in der Ernährung und im Verhalten von G. blacki vor und innerhalb der EW zu bestimmen, die damit in Zusammenhang stehen könnten bis zu seinem Untergang (Ergänzende Informationen, Abschnitte 12–14).

Den 157 radiometrischen Altersschätzungen zufolge liegen die Fossilfunde in den 22 Höhlen zwischen 2.300 und 49 ka (Abb. 2a und 3a, Erweiterte Daten Abb. 3–6 und Ergänzende Informationen in den Abschnitten 4–8 für alle Datierungstabellen und Diskussion von Einschränkungen). und Unsicherheiten). Diese Studie erweitert die Zeitachse für das Vorkommen von G. blacki von 2,3 Ma auf 255 ka, liefert einen genauen Zeitpunkt für das Fenster des Aussterbens bei 295–215 ka (2σ) (Ergänzende Informationen, Abschnitt 9) und legt Schwerpunkte für die Paläoumwelt und fest Verhaltensanalyse (Prä-EW (2.300–700 ka), Übergangsphase (700–295 ka), EW (295–215 ka) und Post-EW (215 ka bis heute)).

Fig. 2: Beispieldatensätze zur Unterstützung der Aussterbeereignisse.

a–d, Daten beziehen sich auf das Timing (a), die Umgebung (b) und das Verhalten (c,d), die von den Standorten präsentiert werden. a, Modellierte Altersbereiche jeder Höhle (n = 22 Höhlen) unter Verwendung des minimalen und maximalen Alters der fossilführenden Einheit (n = 157 Proben). Die Höhlen (x-Achse) im Vergleich zum Alter (y-Achse), mit G. blacki (grüne Kreise) und Nicht-G. Blacki (orangefarbene Kreise) Brekzie. Die Datenpunkte stellen Durchschnittsalter mit Standardabweichung dar. bei 2σ Unsicherheiten. Die Einschübe sind modellierte Brekzien aus Queque (i) und Baxian (ii). G, G. blacki-führende Brekzie; F1, darüber liegender Fließstein; und Non-G, Abwesenheit von G. blacki. Datenpunkte sind Durchschnittsalter mit Standardabweichung. bei 2σ Unsicherheiten. Die schwarzen horizontalen Rechtecke (mit gestrichelten Linien) stellen die Grenze gemäß der Modellierung dar (Ergänzende Informationen, Abschnitt 2 und Ergänzende Abbildung S1a – v). Die modellierte EW ist die vertikale graue Linie. b, Prozentsatz der Pollen von den Standorten in a, die Baumarten (grün), Nichtbaumarten (gelb) und Farne (orange) repräsentieren. Die Kreisdiagramme liefern einen Durchschnitt der Pollenveränderungen vor (links) und nach dem Aussterben (rechts). c, DMTA-Boxplot-Reihe nach Alter von 12 Höhlen (x-Achse) versus molarer Mikroverschleißkomplexität (Asfc, oben, y-Achse) und Anisotropie (epLsar, unten, y-Achse) von G. blacki (rot, n = 16) und P . weidenreichi (blau, n = 22). Die Größenbereiche der Boxplots stellen mittlere Komplexitäts- und Anisotropiewerte pro Standort dar. Die Daten werden als Mittelwerte  ± Interquartilbereich und Whiskers bei 95 % KI dargestellt (Ergänzungstabelle S28). d, Spurenelementkartierung von G. blacki und P. weidenreichi. Sr/Ca (i) und Ba/Ca (ii) eines rechten M3 G. blacki-Zahns (CSQSN-44) und Sr/Ca-Karte eines rechten M2 P. weidenreichi-Zahns (CSQ0811-4) (iii), alle aus Queque Höhle. Unten: Sr/Ca (iv) und Ba/Ca (v) aus einem P4-Zahn von G. blacki (ST_02_109) im Vergleich zu Sr/Ca (vi) aus einem linken M3-Zahn von P. weidenreichi (CLMST0911-118), alle aus Shuangtan-Höhle. a.u., beliebige Einheiten.


Abb. 3: Eine Zusammenfassung aller Datensätze, chronologisch aufbereitet.

​a, Zeitleiste des Aussterbens basierend auf den modellierten Altersspannen für alle 22 Höhlen. Die Zahlen auf der y-Achse beziehen sich auf die Höhlen in Abb. 2a. Beachten Sie die verkürzte Zeitleiste (1.800 ka). Die EW (255 ± 40 ka) ist eine vertikale graue Box (EW) mit einer durchgezogenen, hellgrauen Box (Übergangsphase) für den Beginn einer erhöhten Umweltvariabilität. b, Der Prozentsatz an Pollen, aufgetragen auf einer Zeitachse, gruppiert in baumartige (grün), nicht baumartige (gelb) und Farne (orange). Die dunkleren Streifen stellen Standorte dar, die Pollendaten enthalten, während die helleren Abschnitte dazwischen eine Schätzung der Pollenveränderungen darstellen. Die Mikrokohle (schwarze gestrichelte Linie) korreliert mit der Zunahme der Farne und dem Rückgang der Baumbedeckung. Die dunkelgrünen Baumabschnitte stellen Waldstörungen dar. Taxa mit hohem Umsatz wie Trema, Celtis und Sapindaceae sind während der Übergangsphase und in Ostwesteuropa vorhanden. c, Der Prozentsatz der Zähne von G. blacki (rot) im Verhältnis zu den Zähnen von P. weidenreichi (blau) in repräsentativen Höhlen als grober Indikator für die relative Häufigkeit von G. blacki im Vergleich zu P. weidenreichi an jedem Standort. Die relative Anzahl der G. blacki-Zähne nimmt unmittelbar vor der Übergangsphase ab, was eine Veränderung in der Zusammensetzung der Fauna darstellt, und während der Übergangsphase, was die Ausrottung von G. blacki bedeutet. d,e, Isotopenänderungen für fossile Zähne von P. weidenreichi (blaue Kreise und Dreiecke) und G blacki (rote Kreise und Dreiecke), aufgezeichnet auf einer Zeitachse; moderne P. weidenreichi sind blaue Quadrate. δ13C (‰) (d) und δ18O(‰) (e). f,g, DMTA-Boxplot-Zeitreihen für Mikroverschleißkomplexität (f) und Anisotropie (g) von G. blacki (rot) und P. weidenreichi (blau); Definitionen siehe Abb. 2c. h, Ein Landschafts- und Umweltzeitschnitt, der die Veränderung der Vegetation und der Primatenarten von der Zeit vor der EW über die EW bis zur Zeit nach der EW zeigt.

Dir durchgeführte Pollenanalyse zeigt, daß die Umwelt während der Vor-EW von Baumarten (Pinaceae, Fagaceae und Betulaceae) mit Grünlandflächen dominiert wurde (Abb. 2b und 3b). Allerdings kam es vor der EW während der Übergangsphase zu einer Veränderung der Waldpflanzengemeinschaften und einer Zunahme der Waldstörungstaxa, wobei offenere Wälder dominierten. Nach der EW etwa 200 ka gab es einen starken Rückgang der Baumbedeckung, eine Zunahme der Farne (z. B. Moraceae und Podocarpus), eine starke Zunahme des Graslandes (z. B. Poaceae) und vermehrte Anzeichen von Holzkohle in der Landschaft (Erweitert). Daten Abb. 7 und ergänzende Informationen Abschnitt 10).

Eine detaillierte Faunenanalyse zeigt, daß die Standorte vor der EW durch G. blacki (in relativ großer Zahl) (Abb. 3c), Ailuropoda microta, Procynocephalus, Sinomastodon, Stegodon, Hesperotherium und Hippopotamodon gekennzeichnet waren, die sich zu G. blacki (in relativ großer Zahl) verlagerten kleine Zahlen) (Abb. 3c), Ailuropoda baconi, Stegodon und Elephas vor dem EW und ein Fehlen von G. blacki nach dem EW (Ergänzende Informationen, Abschnitt 3). Die mikrostratigraphischen Analysen von fünf Höhlen zeigen vor-EW-Mikrofazies, die von feinen Körnern, höheren Tonen und Oxiden, Bioturbation und Guano-induzierter Phosphatierung dominiert werden. Im EW nahmen die Korngrößen zu, wobei geringere Oxide, Bioturbation und Knochen-/Zahnveränderungen eine bessere Fossilerhaltung ermöglichten. Während der Zeit nach der EW kehrte dies zu den Merkmalen vor der EW zurück (Erweiterte Daten, Abb. 8c und Abschnitt 11 mit ergänzenden Informationen).

Die stabilen Isotopendaten deuten darauf hin, dass δ13C und δ18O von G. blacki für die Zeit vor dem EW zwischen −16,2 und −13,8 ‰ bzw. −9,7 und −7,0 ‰ liegen. Während der EW steigt dieser leicht auf −15,3 bis −10,3 ‰ bzw. −9,3 bis −6,3 ‰. Im Fall von P. weidenreichi sind die δ13C- und δ18O-Bereiche vor EW ähnlich bei –14,7 bis –13,7‰ und –7,1 bis –6,3‰, erstrecken sich auf –14,7 bis –13,3‰ und ändern sich auf –4,9 und –4,4‰ während der EW-Periode (Abb. 3d, e, Erweiterte Daten Abb. 8b und Abschnitt 12 mit ergänzenden Informationen).

Die Spurenelementanalyse der G. blacki-Zähne vor der EW zeigt mehrere deutliche und synchrone Sr/Ca- und Ba/Ca-Streifen im Zahnschmelz und Dentin, die sich in deutlich weniger sichtbare diffuse Streifen näher an der EW ändern (Abb. 2d, erweitert). Daten Abb. 9 und 10a und ergänzende Informationen Abschnitt 13). Darüber hinaus ist in der Prä-EW eine deutliche Ableitungsstreifenbildung zu erkennen, die während der EW weniger deutlich wird (Extended Data Abb. 10a). Die Microwear-Analyse zeigt keine statistisch signifikanten Ernährungsunterschiede zwischen G. blacki- und P. weidenreichi-tragenden Standorten (Ergänzende Informationen, Abschnitt 14). Es gibt jedoch erhebliche Unterschiede in der Ernährung an vier G. blacki-tragenden Standorten zwischen der Zeit vor der EW und kurz vor der EW. G. blacki neigt dazu, etwas höhere Schwankungen der mittleren Anisotropie- und Komplexitätstrendlinien zu zeigen, wohingegen die von P. weidenreichi stabiler zu sein scheinen, insbesondere für die Anisotropie über die EW hinaus (Abb. 2c und 3f, g, erweiterte Daten Abb. 10b und). Ergänzende Informationen Abschnitt 14).

Zum ersten Mal wurde die größte Sammlung von In-situ-Beweisen von G. blacki über sein gesamtes Verbreitungsgebiet genau datiert, um eine genaue Zeitleiste für die Anwesenheit und Abwesenheit von G. blacki im Fossilienbestand zu liefern. Frühere Datierungen konzentrierten sich hauptsächlich auf die früheren Beweise für G. blacki2,8 und ortsspezifische Chronologien (z. B. Lit. 9). Im Gegensatz dazu wurde durch die Eingrenzung von Höhlen innerhalb des gesamten Altersbereichs sowohl im Chongzuo- als auch im Bubing-Becken ein genaueres regionales Fenster des Aussterbens bei 295–215 ka ermittelt.

Die Pollen- und Faunendaten deuten darauf hin, daß die frühen Mosaiklandschaften vor der EW in der Übergangsphase durch eine erhöhte Umweltvariabilität unterbrochen wurden (Abb. 3b), was durch die Veränderung der Waldgemeinschaften und -strukturen nahegelegt wird, und nach der EW, wie durch einen Rückgang der Baumbestände nahegelegt Bedeckung und eine Zunahme von Farnen und Grasland im Zusammenhang mit Bränden. Diese Variabilität begann schrittweise zwischen 1.100 und 350 ka und nahm ab etwa 200 ka dramatisch zu (Abb. 3b). Es wurde diese Variabilität als Verschiebungen hin zu erhöhter Saisonalität und trockeneren Umgebungen interpretiert, die zu einer Verlagerung hin zu saisonalen subtropischen/tropischen feuchten Tieflandwäldern und einer Zunahme von Sträuchern und offenen Graslandumgebungen vor und während der EW führten (Ergänzende Informationen, Abschnitt 10). Diese Umweltvariabilität zeigt sich auch in der Sedimentaufzeichnung, da die stabilen Niedrigenergieumgebungen der Vor-EW durch instabile Hochenergieumgebungen der EW ersetzt wurden, wobei die Wasserverfügbarkeit auf die Regenzeit beschränkt war (Erweiterte Daten, Abb. 8c und Abschnitt „Ergänzende Informationen“) 11).

Der Rückgang der Waldfläche in diesem Zeitraum ist in China21, Südostasien22 und Australasien23 dokumentiert. Die Pollenstudie zeigt jedoch, daß der Schlüssel zum Aussterben von G. blacki nicht in der Verschlechterung der Baumbedeckung liegt, sondern vielmehr im Einfluss von Umweltschwankungen auf die Veränderung der Zusammensetzung von Waldgemeinschaften, insbesondere in der Zunahme von Störtaxa. Die gewonnenen stabilen Isotopen- und Spurenelementdaten liefern neue Einblicke in das Ausmaß dieser Variabilität und die Auswirkungen auf G. blacki (Ergänzende Informationen, Abschnitte 12 und 13). Vor EW lebten G. blacki und P. weidenreichi beide in bewaldeten Umgebungen mit geschlossenen Baumkronen (Abb. 3b und erweiterte Daten, Abb. 8b) mit stärkerer biogener Streifenbildung (Abb. 2d(i)–(iii)), was wahrscheinlich auf a zurückzuführen ist größere Vielfalt an Nahrungsquellen, einschließlich saisonaler Früchte und Blumen und periodischer Wasserkonsum, wie durch die deutliche Bleistreifenmarkierung angezeigt (Erweiterte Daten Abb. 10a,b). Die wahrscheinlichsten Nahrungsquellen wären das ganze Jahr über in größerer Verfügbarkeit gewesen und hätten nur diskreten Stress in der Bevölkerung verursacht (Abb. 2d(i)–(iii)). Mit Ausnahme eines Individuums scheint G. blacki während der gesamten EW-Periode eine spezialisiertere geschlossene Baumkronennische unterhalten zu haben, die möglicherweise auf eine Mischung von Waldpflanzen angewiesen ist (Erweiterte Daten, Abb. 8b). Diese Spezialisierung während einer Umweltveränderung könnte zu einem diffuseren biogenen Signal im Zahngewebe der einzelnen Personen geführt haben (Abb. 2d(iv)–(v)), was auf eine stark verringerte Ernährungsvielfalt und einen geringeren regelmäßigen Wasserverbrauch schließen lässt (Erweiterte Daten, Abb. 10c). ,d) und erhöhter chronischer Stress in der Bevölkerung (Abb. 2d(iv)–(v)). Dies ist der erste Einblick in das Verhalten von G. blacki als einer Art am Rande des Aussterbens, was im krassen Gegensatz zu P. weidenreichi (Abb. 2d(vi)) steht, das zu diesem Zeitpunkt viel weniger Stress zeigt. Über den EW hinaus scheint sich P. weidenreichi verlagert zu haben, um die offeneren, saisonalen Lebensräume zu nutzen (Extended Data Abb. 8b) und möglicherweise weiterhin die saisonale Befruchtung von Früchten zu nutzen, wie es das moderne Pongo heute auf Borneo tut24.

Die Veränderungen der Mikroverschleißwerte bei G. blacki- und P. weidenreichi-Zähnen können auch mit Perioden der Fruchtknappheit zusammenhängen. G. blacki neigt dazu, spezifischere Ernährungspräferenzen zu zeigen (sowohl bei Früchten als auch bei faserhaltigen Nahrungsmitteln), was auf eine stärkere Abhängigkeit von faserhaltigen Ersatznahrungsmitteln hinweist (Abb. 2c), beispielsweise in der Ostwestküste, als das Klima saisonaler wurde und weniger Früchte verfügbar waren. Dies könnte G. blacki dazu gezwungen haben, seine Ernährung von ernährungsphysiologisch bevorzugten Komponenten in geringerem Angebot auf weniger nährstoffreiche Ersatznahrungsmittel in reichlichem Angebot umzustellen. Der erhöhte Verzehr von faserhaltigen Lebensmitteln bei P. weidenreichi im EW könnte auf eine bessere Umstellung auf Ersatznahrungsmittel und eine insgesamt flexiblere und ausgewogenere Ernährung hinweisen (Abb. 2c und erweiterte Daten, Abb. 10). Diese erste DMTA-Analyse des gesamten G. blacki-Materialspektrums bietet einen einzigartigen Einblick in seine Unfähigkeit, sich anzupassen, und seine möglicherweise schlechte Auswahl an Ersatznahrungsmitteln.

Diese Studie präsentiert einen genauen Zeitplan für das Vorkommen und Aussterben von G. blacki. In der Zeit vor der EW blühte G. blacki zusammen mit anderen Primaten als erfolgreicher Spezialist auf (Abb. 3c) und genoss eine große Nahrungsvielfalt in einem reichen immergrünen Laubwald (Abb. 2d(i)–(ii)) und reichlich Wasserquellen (Erweiterte Daten Abb. 10a–d) unter stabilen Umweltbedingungen (Abb. 2b). Etwa vor 700–600 ka kam es in der Übergangsphase zu einer Verschiebung hin zu einer zunehmenden Saisonalität, die zu einer Veränderung der Waldgemeinschaften (Abb. 3b), einer geringeren Vielfalt an Nahrungsquellen (Abb. 2d(iii)–(iv)) und instabilen hohen Temperaturen führte. Energieumgebungen (Erweiterte Daten, Abb. 8c), Veränderungen in der Zusammensetzung der Fauna und weit verbreitete Faunenumsätze (Abb. 3c und ergänzende Informationen, Abschnitt 2), eine Verlagerung hin zu saisonalen Lebensräumen durch P. weidenreichi (Erweiterte Daten, Abb. 8b) und a Veränderung der Ernährungsvielfalt und des Verhaltens von G. blacki (Abb. 2d und 3f, g).

Obwohl P. weidenreichi vor der EW eine ähnliche Umgebung hatte, gibt es zwischen 600 und 300 Jahren Hinweise darauf, daß G. blacki nicht in der Lage war, sich an diese Übergangszeit anzupassen, was einen größeren Einfluss auf seine Widerstandsfähigkeit gegenüber der sich verändernden Ökologie hatte. Die Abhängigkeit von G. blacki von Früchten und nährstoffärmeren Ersatznahrungsmitteln (Abb. 2c) führte zu einer risikoreicheren Futtersuchstrategie und machte ihn in Kombination mit seiner viel größeren, weniger beweglichen Körpergröße anfälliger für Veränderungen in der Waldstruktur25 (Abb . 2c). Darüber hinaus war G. blacki ausschließlich terrestrisch, möglicherweise mit einem kleinen geografischen Verbreitungsgebiet20, reiste jedoch regelmäßig das Tal hinunter, um Wasser zu verbrauchen (Erweiterte Daten Abb. 10a–d), wohingegen P. weidenreichi eher baumbewohnend, mobil und halbsolitär war und Wasser im Blatt sammelte Überdachung. Darüber hinaus deuten die einzigartigen dentognathen Merkmale13,14 und die riesige Körpergröße4,5 von G. blacki auf einen höheren Bedarf an Nahrungsaufnahme und ein langsameres und verzögerteres Wachstumsmuster hin, was auf eine geringere Reproduktionsrate schließen lässt26. Obwohl die Zahngröße von G. blacki im Laufe des Pleistozäns zunahm, was auch eine Zunahme der Körpergröße bedeutet, nahm die Größe von P. weidenreichi ab27. Dies macht ihn zu einem agileren Adapter. P. weidenreichi zeigte auch eine Flexibilität gegenüber offenen Lebensräumen (Extended Data Abb. 8b), die sich möglicherweise in kleineren Gruppen bewegten, und war in der Lage, sein Verhalten als Reaktion auf Umweltschwankungen anzupassen, was zu einer weniger gestressten Population führte (Abb. 3d).

Vor etwa 300 Jahren gibt es Hinweise auf eine kämpfende G. blacki-Population, da die Anzahl der G. blacki-Höhlen und -Zähne abnahm (Abb. 3c), was auf eine schrumpfende Population hindeutet. Die starke Veränderung der Zahnbänder von G. blacki weist auf chronischen Stress in der Bevölkerung hin (Abb. 2d(iv)–(v)) und weist auf Veränderungen des bevorzugten Ernährungsverhaltens (Abb. 2c und Extended Data Abb. 10f, g) hin dass G. blacki Schwierigkeiten hatte, auf die Umweltveränderungen in einem potenziell schrumpfenden Gebiet zu reagieren20. Es scheint, daß seine Waldrefugien ihre Struktur verändert haben und zu offen und gestört geworden sind, als dass sich diese Art ernähren könnte. Im Vergleich zu anderen bekannten Aussterbeereignissen in Nordamerika und Australien, die vom Homo sapiens28,29,30 beeinflusst wurden, gibt es keine Hinweise darauf, dass archaische Homininen bei diesem früheren Aussterben der Megafauna in Südchina eine Rolle gespielt haben.

Die Angabe einer definierten Ursache für das Aussterben ist für viele ausgestorbene Arten eine Leistung, die selten erreicht wurde, da sie einen gattungs- und artspezifischen Ansatz erfordert28. Obwohl es sehr schwierig sein kann, die genauen Ursachen für die Ausrottung und das Aussterben der Megafauna zu bestimmen29,30, liefert unsere Multiproxy-Aufzeichnung des Zeitpunkts, der Umwelt und des Verhaltens von G. blacki fundierte regionale Einblicke in den ökologischen Kontext dieser Art. G. blacki war der ultimative Spezialist und als sich die Baumumgebung veränderte, besiegelte sein Kampf um die Anpassung sein Schicksal. Im Vergleich dazu verbreitete und diversifizierte sich der generalistische Homo in dieser Zeit über ganz Südostasien und schien die neuen Mosaikumgebungen, die für G. blacki ein solches Problem darstellten, flexibel ausgenutzt zu haben. Insgesamt liefert unser Datensatz einen wichtigen Kontext für die sich verändernden Schicksale verschiedener Primatenarten in Südostasien und wirft neues Licht auf den Untergang des größten Primaten, der jemals auf dem Planeten gelebt hat.

Quelle

Zhang, Y., Westaway, K.E., Haberle, S. et al. The demise of the giant ape Gigantopithecus blacki. Nature (2024).

Identifizierung von Indocyaningrün als STT3B-Inhibitor gegen die Zytotoxizität von Pilz-α-Amanitin

Bei Wang, Arabella H. Wan, Yu Xu, Ruo-Xin Zhang, Ben-Chi Zhao, Xin-Yuan Zhao, Yan-Chuan Shi, Xiaolei Zhang, Yongbo Xue, Yong Luo, Yinyue Deng, G. Gregory Neely, Guohui Wan & Qiao-Ping Wang

Abstrakt

Der „Todespilz“, Amanita phalloides, ist der giftigste Pilz der Welt und für 90 % der durch Pilze verursachten Todesfälle verantwortlich. Der tödlichste Bestandteil des Knollenblätterpilzes ist α-Amanitin. Trotz seiner tödlichen Wirkung bleiben die genauen Mechanismen, wie α-Amanitin den Menschen vergiftet, unklar, so daß kein spezifisches Gegenmittel für die Behandlung verfügbar ist. Hier wird gezeigr, daß STT3B für die α-Amanitin-Toxizität erforderlich ist und sein Inhibitor Indocyaningrün (ICG) als spezifisches Gegenmittel verwendet werden kann. Durch die Kombination eines genomweiten CRISPR-Screenings mit einem In-silico-Wirkstoffscreening und einer In-vivo-Funktionsvalidierung entdeckte das Forscherteam, daß der N-Glykan-Biosyntheseweg und seine Schlüsselkomponente STT3B eine entscheidende Rolle bei der α-Amanitin-Toxizität spielen und dass ICG ein STT3B Inhibitor ist.

Darüber hinaus zeigten die Ergebisse, daß ICG die toxische Wirkung von α-Amanitin in Zellen, Leberorganoiden und männlichen Mäusen wirksam blockiert, was zu einer Gesamtüberlebenssteigerung der Tiere führt. Durch die Kombination eines genomweiten CRISPR-Screenings auf α-Amanitin-Toxizität mit einem In-silico-Arzneimittelscreening und einer funktionellen Validierung in vivo hebt die Studie ICG als STT3B-Inhibitor gegen das Pilztoxin hervor.

Einführung

Pilzvergiftungen sind weltweit die Haupttodesursache bei Lebensmittelvergiftungen. Zwischen 2010 und 2020 wurden in China insgesamt 10.036 Expositionsereignisse gemeldet, die zu 38.676 Erkrankungen und 788 Todesfällen führten. Unter allen giftigen Pilzen sind Knollenblätterpilze (Amanita phalloides) für mehr als 90 % aller Todesfälle verantwortlich. Eine Amatoxinvergiftung ist häufig mit schlechten Ausgang verbunden, hauptsächlich aufgrund des irreparablen akuten Versagens der Leber oder der Niere.

α-Amanitin (AMA) ist eines der giftigsten Amatoxine. Es wird angenommen, daß die toxischen Wirkungen von AMA auf den Menschen mit der Hemmung der RNA-Polymerase II (RNAP II) verbunden sind, was zur Produktion von Tumornekrosefaktor-α (TNFα)8, oxidativem Stress9 und Apoptose führt. Traditionelle Therapien beschränken sich oft auf die unspezifische Neutralisierung von Toxinen sowie symptomatische und unterstützende Pflege.

In den letzten Jahrzehnten haben mehrere klinische Medikamente, darunter Silybin und Penicillin, eine starke therapeutische Wirksamkeit bei menschlichen Amatoxinvergiftungen gezeigt, obwohl die genauen Wirkmechanismen unklar bleiben. Darüber hinaus wurde gezeigt, daß Polymyxin B, das in einem virtuellen Docking als potenzieller RNAP-II-Inhibitor identifiziert wurde, die AMA-Toxizität bei Mäusen blockiert. Spezifische Gegenmittel, die auf bestimmte Proteine abzielen, die eine entscheidende Rolle bei der AMA-Toxizität spielen, sind jedoch nicht verfügbar, da ein vollständiges molekulares Verständnis der AMA-Zytotoxizität fehlt.

Kürzlich haben CRISPR-Screenings (Pooled Clustered Regular Interspaced Short Palindromic Repeats) das molekulare Verständnis der molekularen Mechanismen, die den Zelltod steuern, beschleunigt. Diese Hochdurchsatz-CRISPR-Screenings wurden häufig zur Identifizierung von Genen oder Signalwegen eingesetzt, die an Arzneimittelresistenzen, Mechanismen von Bakterientoxinen oder Virusinfektionen beteiligt sind. Darüber hinaus haben die Wissenschaftler diesen Ansatz genutzt, um die molekularen Mechanismen des tödlichen Quallengifts zu analysieren, was zu einem wirksamen Gegenmittel gegen die Quallentoxizität führte.

In dieser Studie soll ein systematischenr Rahmen für die Entwicklung von Gegenmitteln geschaffen werden, indem die Identifizierung neuer Wirkstoffziele mithilfe eines genomweiten CRISPR-Screenings und eines virtuellen Screenings von FDA-zugelassenen Medikamenten kombiniert wird. Die Wissenschaftler führten zunächst ein genomweites CRISPR-Funktionsverlust-Screening durch, um Gene und Signalwege zu identifizieren, die an der AMA-Zytotoxizität beteiligt sind. Sie fanden heraus, daß mehrere neuartige Wege, einschließlich der N-Glykan-Biosynthese und des Cholesterinstoffwechsels, am AMA-induzierten Zelltod beteiligt sind. Es wurde außerdem dargestellt, daß die N-Glykan-Biosynthese und sein katalytisches Enzym STT3B für die AMA-Toxizität erforderlich sind. Durch die Kombination dieser Daten mit einem In-silico-Screening von FDA-zugelassenen Arzneimitteln und einer anschließenden Funktionsvalidierung konnten die Forscher ICG erfolgreich als potenziellen STT3B-Inhibitor identifizieren. Sie haben außerdem gezeigt, daß ICG den AMA-induzierten Zelltod in vivo und in vitro blockieren kann, was darauf hindeutet, daß ICG bei der Behandlung von AMA/Todeskappenvergiftungen nützlich sein könnte.

Ergebnisse

Ein Hochdurchsatz-CRISPR-Screening zur Identifizierung von Genen und Signalwegen, die für den AMA-induzierten Zelltod erforderlich sind

Amanita phalloides ist eine häufige Todesursache bei Lebensmittelvergiftungen, vor allem aufgrund der Produktion von AMA26 (Abb. 1a). Um die Schlüsselgene und -wege zu identifizieren, die für den AMA-induzierten Zelltod erforderlich sind, führte das Forscherteam unter Verwendung der gepoolten menschlichen CRISPR-Knockout-Bibliothek (Brunello) ein genomweites Funktionsverlust-Screening durch, das auf insgesamt 19.114 Gene abzielt. Sie haben ihr Screening mit der haploiden Zelllinie HAP1 durchgeführt, die ausgiebig zur Untersuchung der Mechanismen der Arzneimittelresistenz, der Toxikologie, der synthetischen Letalität und der Virusinfektion eingesetzt wurde. Vor dem Screening haben sie zunächst die 50-prozentige Hemmkonzentration (IC50) von AMA bestimmt HAP1-Zellen (Abb. 1b).

Anschließend haben sie HAP1-Zellen mit der Brunello-Bibliothek bei einer niedrigen Infektionsmultiplizität (MOI ≈ 0,3) transduziert, um sicherzustellen, dass die meisten HAP1-Zellen nur eine genetische Störung erfahren (Abb. 1c). Mittlerweile wurde die Abdeckung von >500 Zellen sichergestellt, die jeweils 77.441 sgRNA exprimieren. Transfizierte Zellen wurden dann 7 Tage lang mit 1 μg/ml Puromycin selektiert. Anschließend wurden mutierte Zellpools 7 Tage lang einer Dosis von 1,5 μM AMA ausgesetzt und die genomische DNA wurde aus den überlebenden Zellen zur Tiefensequenzierung extrahiert.

Nach einer modellbasierten Analyse der genomweiten CRISPR/Cas9-Knockout-Analyse (MAGeCK) haben sie Hunderte von Genen identifiziert, die mit dem AMA-induzierten Zelltod assoziiert sind (Abb. 2a, b, Ergänzende Daten 1). Eine Untergruppe von sgRNAs, die auf 559 Gene abzielen, war in den mit AMA behandelten Zellen im Vergleich zu den unbehandelten Kontrollen signifikant verändert (p < 0,05 und |LFC | > 1), was darauf hinweist, daß diese Gene an der AMA-Toxizität beteiligt waren (Abb. 2c).

Die Forscher haben zunächst die bioinformatischen Analysen der Genontologie (GO) und KEGG an diesen veränderten Genen durchgeführt. Wie erwartet war „Regulation der Transkription vom RNA-Polymerase-II-Promotor“ am stärksten im biologischen Prozess angereichert (Abb. 2d), und „RNA-Polymerase-II-Transkriptionsfaktor-Aktivitätssequenzspezifische DNA-Bindung“ war auch am stärksten in der molekularen Funktion angereichert Klassifikator (Abb. 2e). Dies steht im Einklang mit dem bisherigen Verständnis, daß AMA durch Hemmung der RNA-Polymerase II31 wirkt. Mehrere KEGG-Wege, einschließlich Apoptose, N-Glykan-Biosynthese und Cholesterinstoffwechsel, wurden ebenfalls durch AMA-induzierten Zelltod angereichert (Abb. 2f).

Das Forscherteam verwendete außerdem einen Netzwerkausbreitungsansatz, um das Gennetzwerk zwischen diesen angereicherten KEGG-Pfaden besser zu verstehen (Abb. 2g). Unter diesen angereicherten Prozessen oder Signalwegen wurden die Transkription und Apoptose der RNA-Polymerase II und die Apoptose10,32 mit der AMA-Toxizität in Verbindung gebracht, über die N-Glykan-Biosynthese und den Cholesterinstoffwechsel wurde jedoch noch nicht berichtet, was darauf hindeutet, daß diese beiden Signalwege eine entscheidende Rolle bei der AMA-Toxizität spielen könnten. Gemeinsam hat das Screening neue Wege identifiziert, die für den AMA-induzierten Zelltod erforderlich sind.

Für den AMA-induzierten Zelltod ist die N-Glykan-Biosynthese erforderlich

Der N-Glykan-Biosyntheseweg ist von besonderem Interesse, da seine Schlüsselkomponenten STT3B und MGAT1 in den Top-10-Genen angereichert waren. N-Glykane auf Glykoproteinen dienen als eine der wichtigsten ko- und posttranslationalen Proteinmodifikationen in eukaryotischen Zellen33 und haben mehrere biologische Funktionen, wie Zelladhäsion, intrazelluläre Signalübertragung, Homöostase und Entzündung34,35. Die N-Glykan-Biosynthese findet im endoplasmatischen Retikulum (ER) und im Golgi-Apparat statt und erfordert eine Reihe von Prozessen, die durch mehrere Enzyme katalysiert werden, darunter ALG10, STT3A/3B, MAN1, MGAT1, MAN2 und MGAT2 (Abb. 3a)36. Wir fanden heraus, daß die Zählungen für sgRNA, die auf ALG10, STT3A/3B, RPN2 und MGAT1 abzielen, in AMA-behandelten Zellen angereichert waren (ergänzende Abbildung 1a – e) und dass STT3B und MGAT1 in den Top-10-Treffern angereichert waren.

Um die Rolle der N-Glykan-Biosynthese beim AMA-induzierten Zelltod zu validieren, verwendeten die Wissenschaftler zunächst Kifunensin (KIF), einen wirksamen Inhibitor kleiner Alkaloide, um die MAN1-Aktivität pharmakologisch zu hemmen und so die Synthese von N-Glykanen zu blockieren37,38. Wie erwartet zeigten KIF-behandelte Zellen eine Resistenz gegen den AMA-induzierten Tod in HAP1-Zellen (Abb. 3b). Wichtig ist, dass KIF auch den Zelltod in HAP1-Zellen hemmte, die 6 Stunden lang mit AMA vorbehandelt wurden (Abb. 3c).

STT3B ist eine vorgelagerte Komponente des N-Glykan-Biosynthesewegs39. STT3B und STT3A bilden den Oligosaccharyltransferase (OST)-Komplex, der die posttranslationale Glykosylierung in ER40,41 katalysiert. Um die Rolle von STT3B bei der AMA-Toxizität weiter zu bestätigen, haben wir mithilfe der CRISPR-Cas9-Technologie STT3B-Knockout-HAP1- und HepG2-Zelllinien generiert. Dementsprechend war die STT3B-mRNA-Expression in beiden Zellen stark reduziert (ergänzende Abbildung 2a, b). Die Abreicherung von STT3B führte zu einer erhöhten Resistenz gegen AMA-induzierten Zelltod in HAP1-Zellen (Abb. 3d) und HepG2-Zellen (Abb. 3e).

Das Forscherteam hat diese Ergebnisse in HepG2-Zellen mit STT3B-Knockdown unter Verwendung von Short-Hairpin-RNA (shRNA) weiter bestätigt (ergänzende Abbildung 2c). Da STT3B bei der Proteinglykosylierung mit STT3A zusammenarbeitet, fragten sie sich, ob die Abreicherung von STT3A in STT3B-Knockout-Zellen zu einer stärkeren Resistenz gegen AMA-Zytotoxizität führen könnte. Als STT3A in STT3B-Knockout-HepG2-Zellen ausgeschaltet wurde, erlangten diese Zellen eine nahezu vollständige Resistenz gegen den AMA-induzierten Zelltod (ergänzende Abbildung 2d-e), was darauf hindeutet, dass die teilweise Resistenz von STT3B-Knockout-HepG2 gegen AMA auf die Expression von STT3A zurückzuführen war OST-Komplex, der funktionell redundant zum STT3B OST-Komplex40 ist.

Darüber hinaus verwendeten sie einen niedermolekularen N-verknüpften Glykosylierungsinhibitor 1 (NGI-1), um die Aktivität von OST42,43 zu blockieren. NGI-1 kann den AMA-induzierten Zelltod bei 2,5 μM hemmen. NGI-1 selbst war jedoch bei 5–20 μM toxisch für Zellen (ergänzende Abbildung 2f), was darauf hindeutet, dass NGI-1 nicht als Gegenmittel zur AMA-Toxizität verwendet werden konnte . Als nächstes fragten sie sich, ob die Glykanbiosynthese den Eintritt von AMA in Zellen beeinflusst. Der intrazelluläre AMA-Gehalt wurde mit einem etablierten Hochleistungsflüssigkeitschromatographietest (HPLC) quantifiziert (ergänzende Abbildung 3). Die Abreicherung von STT3B verringerte den Eintritt von AMA in HAP1-Zellen (Abb. 3f) und HepG2-Zellen (Abb. 3g) signifikant.

Unterdessen hat STT3B-Knockout keinen Einfluss auf die Expression von OATP1B3 und NTCP, die AMA-Transporter in diesen Zellen sind (Abb. 3h, i). Die Hemmung der Glykosylierung kann Stressreaktionen im Endoplasmatischen Reticulum und im Golgi-Apparat auslösen 44, 45, 46. Der STT3B-Knockout löste jedoch weder im ER noch im Golgi Stressreaktionen aus (ergänzende Abbildung 4). Zusammengenommen deuten alle Daten darauf hin, daß STT3B für den AMA-induzierten Zelltod erforderlich ist und den Eintritt von AMA in Zellen beeinflusst. In-silico-Screening von FDA-zugelassenen Molekülen für den STT3B-Inhibitor: Da die Blockierung der N-Glykan-Biosynthese den AMA-induzierten Zelltod verhindern kann, wären die STT3B-Inhibitoren potenzielle Gegenmittel zur Behandlung der AMA-Toxizität. Bisher wurde über kein von der FDA zugelassenes Molekül berichtet, das STT3B spezifisch hemmt. Daher führten die Wissenschaftlerr ein In-silico-Screening von von der FDA zugelassenen Molekülen durch, um nach potenziellen STT3B-Inhibitoren zu suchen.

Für das virtuelle Screening auf STT3B-Inhibitoren wurden die FDA-Molekülbibliotheken (ZINC und Drugbank) mit insgesamt 3201 Verbindungen verwendet. In STT3B gab es zwei mutmaßliche Bindungstaschen. Nach dem In-silico-Screening wurden insgesamt die 34 besten Verbindungen für die zelluläre In-vitro-Validierung ausgewählt (Abb. 4a, Zusatzdaten 2). Aufgrund der Nichtverfügbarkeit einiger Verbindungen wurden nur 24 Verbindungen auf ihren zellulären Schutz gegen AMA-Toxizität getestet. Von allen getesteten Medikamenten konnten ICG und Posaconazol den Zelltod in HAP1-Zellen signifikant verhindern (Abb. 4b), ohne dass die Zellen zusätzlich zytotoxisch wirkten (Abb. 4c). ICG bot nahezu vollständigen Schutz gegen die AMA-Zytotoxizität.

Beim molekularen Andocken bindet ICG an STT3B und blockiert möglicherweise die katalytische Aktivität. ICG hat mehrere Kontakte mit STT3B (Abb. 4d, e), einschließlich der drei Sauerstoffatome von zwei Sulfobutyleinheiten, die drei Wasserstoffbrückenbindungen mit Seitenketten von Ser319, Trp380 und Ser449 gebildet haben. Darüber hinaus beteiligte sich der Benzolring der Benzoindolyleinheit in ICG an einem versetzten Face-to-Face-Pi-Stapel mit der Seitenkette von Trp380 in STT3B. Die hemmende Wirkung von ICG wird durch die Besetzung des Eingangs der STT3B-Substratbindungstasche vermittelt.

ICG lindert die AMA-Toxizität in Zellen und Leberorganoiden

ICG, ein fluoreszierender Jodidfarbstoff, ist seit 1956 von der FDA als diagnostisches Reagenz beim Menschen zugelassen und wird heute häufig in der Augenangiographie und der Beurteilung der Leberfunktion eingesetzt47. ICG kann schnell von Hepatozyten abgebaut werden47 und ICG hat bei einer Standard-Einzeldosis von 0,5 mg/kg keine offensichtlichen Nebenwirkungen (50 % tödliche Dosis beträgt 60-80 mg/kg für Mäuse)48. Daher haben die Forscher die therapeutische Wirkung von ICG auf die AMA-Toxizität weiter untersucht.

Die ICG-Vorbehandlung führte zu einer dosisabhängigen Verringerung des Zelltods sowohl in HAP1-Zellen (Abb. 4f) als auch in HepG2-Zellen (Abb. 4g). Darüber hinaus hemmten ICG-Behandlungen auch den Zelltod in AMA-vorbehandelten HAP1-Zellen (Abb. 4h) und HepG2-Zellen (Abb. 4i) signifikant. Um weiter zu bestätigen, daß ICG die AMA-Toxizität blockieren kann, überwachte das Forscherteam den Zelltod mithilfe der Calcein/Propidiumiodid (PI)-Färbung und stellte erneut fest, daß mit ICG vorbehandelte Zellen viel resistenter gegen den AMA-induzierten Zelltod waren (Abb. 4j, k).

Darüber hinaus haben sie ein Mausleber-Organoidmodell zur weiteren Bewertung der therapeutischen Wirkung von ICG erstellt. In Übereinstimmung mit ihren Beobachtungen in HAP1- und HepG2-Zellen könnte ICG die zytotoxische Wirkung von AMA auf diese Leberorganoide wirksam blockieren.

Mit ICG behandelte Organoide waren enger verbunden und größer als die mit Vehikel behandelten Organoide (Abb. 5a, b). Wir beobachteten auch, dass die ICG-Behandlung den AMA-induzierten Zelltod durch den Calcein/PI-Färbetest signifikant verhinderte (Abb. 5c). Der ICG-Behandlungseffekt wurde auch durch Hämatoxylin- und Eosin-Färbung (H&E) beobachtet und ICG blockierte die AMA-Toxizität auf Organoiden (Abb. 5d). Zusammengenommen ist die Kombination des funktionellen CRISPR-Screenings mit der In-silico-Arzneimittelvorhersage eine praktikable Pipeline zur schnellen Identifizierung neuer Toxin-Gegenmittel. Hier zeigen die Forscher, daß ICG ein potenzieller STT3B-Inhibitor ist, der den AMA-induzierten Zelltod verhindern kann.

ICG verhindert den AMA-induzierten Zelltod, indem es die STT3B-Aktivität hemmt Um zu testen, ob ICG mit STT3B in Zellen interagieren kann, wurde die intrazelluläre Lokalisierung von ICG nachgewiesen. ICG kann grüne Fluoreszenz erzeugen. Es wurde heraus gefunden, daß ICG in HAP1-Zellen zusammen mit ER lokalisiert war, und diese Kolokalisation wurde in HepG2-Zellen bestätigt (Abb. 6a), was darauf hindeutet, daß ICG im ER wirkt, wo auch STT3B lokalisiert ist.

Um weiter zu testen, ob ICG die STT3B-Aktivität hemmen kann, verwendete das Wissenschaftsteam einen Biolumineszenz-Reporter, nämlich ER-LucT, um die STT3B-Aktivität durch ein ER-LucT-Reportersystem zu bewerten42,43. Dieses System besteht aus einer modifizierten Luciferase (Luc) mit einer ER-Translationssequenz und drei (T) potenziellen Glykosylierungsstellen49. Die N-Glykosylierung der modifizierten Luciferase hemmt deren Aktivität und reduziert die Biolumineszenz (Abb. 6b).

Das ER-LucT-Reportersystem wurde zunächst in HAP1-Zellen getestet. Die Lumineszenz war in Zellen mit ER-LucT signifikant verringert, was darauf hindeutet, daß die Luciferase-Aktivität gehemmt war (Abb. 6c). Wie erwartet erhöhte ICG im Einklang mit NGI-1 (ergänzende Abbildung 5a) die Aktivität von ER-LucT, indem es die durch STT3B vermittelte N-Glykosylierung verringerte (Abb. 6d). Ähnliche Ergebnisse wurden auch in HepG2-Zellen beobachtet (Abb. 6e, f, ergänzende Abb. 5b). Zusammen verhindert ICG den AMA-induzierten Zelltod der Zellen, indem es die STT3B-Aktivität hemmt.

ICG ist ein wirksames Gegenmittel zur Behandlung der AMA-Toxizität bei Mäusen Als nächstes testeten die Forscher die Wirksamkeit von ICG als AMA-Gegenmittel an Tieren. Um die tatsächliche AMA-Toxizität beim Menschen nachzuahmen50,51, wurde ICG Mäusen verabreicht, die wie zuvor berichtet 4 Stunden lang mit intraperitonealem (i.p.) AMA mit 0,33 mg/kg vorbehandelt wurden5,52.

Drei aufeinanderfolgende Verabreichungen von ICG in einer Menge von 5 mg/kg, was etwa 0,5 mg/kg beim Menschen entspricht53, wurden Mäusen im Abstand von 4 Stunden intravenös (iv) injiziert (Abb. 7a). Die ICG-Verteilung wurde durch Nahinfrarot (NIR)54 überwacht. Nach der Injektion verteilte sich ICG schnell im ganzen Körper und konzentrierte sich nach 2 Stunden hauptsächlich in der Leber (Abb. 7b), was mit früheren Beobachtungen übereinstimmt, daß ICG schnell aus dem Plasma entfernt und selektiv von der Leber aufgenommen wird55.

Da Leber und Niere die wichtigsten AMA-Zielorgane sind, wurde die schützende Wirkung von ICG auf die AMA-exponierte Leber und Niere untersucht. Die Schäden in Leber und Niere wurden durch Messung von Plasma-Biomarkern und histopathologischen Analysen bewertet. Nach der AMA-Behandlung waren die Leberbiomarker Aspartataminotransferase (AST), Alaninaminotransferase (ALT) und alkalische Phosphatase (ALP) signifikant erhöht (Abb. 7c, d, f) und das AST/ALT-Verhältnis war deutlich verringert (Abb. 7e).

Dies deutet darauf hin, daß die Leber durch AMA schwer geschädigt wurde. Wichtig ist, daß die ICG-Behandlung die AST-, ALT- und ALP-Spiegel deutlich senkte, was darauf hindeutet, daß ICG den durch AMA verursachten Leberschaden blockieren kann (Abb. 7c–f). Ähnliche Ergebnisse wurden für die Nieren beobachtet, wobei die ICG-Behandlung die renalen Biomarker Blut-Harnstoff-Stickstoff (BUN) und Kreatinin (Cre) bei den mit AMA behandelten Mäusen signifikant reduzierte (Abb. 7g, h).

Die ICG-Behandlung reduzierte auch die Infiltration entzündlicher Zellen und die Nekrose in der Leber von AMA-behandelten Mäusen erheblich (Abb. 7i). Diese Daten wurden quantifiziert und histologische Ergebnisse bestätigten, dass ICG die AMA-induzierte Lebernekrose unterdrücken kann (Abb. 7j), und ähnliche Ergebnisse wurden für mit AMA und ICG behandelte Nieren beobachtet (Abb. 7i, k).

Darüber hinaus führten die Wissenschaftler einen Langzeitüberlebenstest (30 Tage) durch, um zu bewerten, ob ICG auch vor dem durch AMA verursachten Tod schützen kann. Dabei stellten sie fest, daß die ICG-Behandlung das Überleben von mit AMA behandelten Mäusen signifikant verbesserte (Abb. 7l). Darüber hinaus beobachteten sie weder in Kurz- noch in Langzeitstudien offensichtliche Nebenwirkungen bei Mäusen, die nur ICG erhielten, was zeigt, daß diese ICG-Dosis für die Behandlung einer AMA-Vergiftung bei Mäusen sicher ist.

Es wuden auch längere Zeitintervalle (bis zu 12 Stunden) zwischen der AMA-Injektion und der ICG-Behandlung in einem Mausmodell untersucht. Die Ergebnisse zeigten, daß die Zeitintervalle zwischen der AMA-Injektion und der ICG-Verabreichung wichtig für den ICG-Behandlungseffekt waren. Die Intervalle von 8 h und 12 h begrenzten den ICG-Behandlungseffekt, und Intervalle von 1 h und 4 h hatten eine bessere therapeutische Wirksamkeit (ergänzende Abbildung 6). Dies weist darauf hin, daß ICG so früh wie möglich verabreicht werden muss, wenn eine AMA-Vergiftung auftritt.

Um die hemmende Wirkung von ICG auf die Proteinglycansynthese bei Tieren zu testen, führte das Team eine Lektinfärbung durch, um die In-vivo-Glykation zu beurteilen. Sie verwendeten Fluorescein-Sambucus-Nigra-Agglutinin (SNA) und Fluorescein-Phaseolus-vulgaris-Leukoagglutinin (PHA-L), um sialylierte Glykane bzw. komplexe Glykane anzufärben, wie bereits berichtet56. Wie erwartet können SNA und PHA-L die glykierten Proteine markieren, die sich auf der Plasmamembran von Leberzellen befinden.

ICG könnte die Fluoreszenzen der SNA- (Abb. 8a, b) und PHA-L-Färbung (Abb. 8c, d) im Vergleich zum Vehikel deutlich reduzieren, was darauf hindeutet, daß ICG die Glykation in vivo effektiv stören könnte. Zusammengenommen zeigen diese Daten, daß ICG ein wirksames Gegenmittel zur Behandlung der AMA-Toxizität bei Mäusen ist.

Diskussion

Unser unvoreingenommenes genomweites CRISPR-Screening hat ergeben, daß sowohl STT3B- als auch die N-Glykan-Biosynthesewege für die AMA-Toxizität erforderlich sind, und diese Daten wurden sowohl genetisch als auch pharmakologisch validiert. Darüber hinaus haben die Forscher durch die Kombination unseres CRISPR-Screenings mit dem In-silico-Screening arzneimittelfähiger Ziele eine von der FDA zugelassene Verbindung ICG entdeckt, die als neuartiges potenzielles Gegenmittel zur Linderung der AMA-Toxizität sowohl in Zellen als auch bei Tieren dienen könnte (Abb. 9). Die gewonnenen Ergebnisse zeigen, daß ein kombinierter Ansatz aus genomweitem CRISPR-Screening in Verbindung mit der In-silico-Arzneimittelvorhersage dabei helfen kann, schnell neue Gegenmittel für medizinisch relevante menschliche Gifte zu identifizieren.

Da der Verzehr von Knollenblätterpilz (Amanita phalloides) zu einer hohen Sterblichkeitsrate führt, besteht ein dringender Bedarf, die molekulare Toxikologie seines wichtigsten toxischen Bestandteils AMA besser zu verstehen. Dies erleichtert somit die Entdeckung wirksamer Gegenmittel zur Behandlung von Pilzvergiftungen.

Mithilfe eines genomweiten CRISPR-Cas9-Screenings haben wir mehrere wichtige Gene und Signalwege identifiziert, die am AMA-induzierten Zelltod beteiligt sind. Um die Fähigkeit des Screenings zur Identifizierung von Schlüsselfaktoren zu unterstützen, gehörten einige der bekannten Mechanismen, die an der AMA-Toxizität beteiligt sind, wie Apoptose und RNA-Polymerase-II-Hemmung, zu den Signalwegen und GO-Begriffen. Einer unserer wichtigsten Wege, die N-Glykan-Biosynthese, wurde sowohl pharmakologisch als auch genetisch validiert. Die N-verknüpfte Glykosylierung spielt eine entscheidende Rolle bei der Proteinfaltung und dem Proteintransport, die an einer Vielzahl biologischer Erkennungsereignisse beteiligt sind34.

Es wurde berichtet, daß bakterielle Toxine37,57 und Viren23,58 N-Glykane binden und diese Wechselwirkung den Eintritt in Zielzellen erleichtert. In diesem Fall stellten wir die Hypothese auf, dass die Blockierung von N-Glykanen von AMA-Transportern die Erkennung von AMA behindern könnte, was zur Resistenz beiträgt. STT3B ist ein Schlüsselenzym für die N-Glykan-Biosynthese und gilt als therapeutisches Ziel für die Behandlung von Krebserkrankungen42. Es wurde jedoch keine von der FDA zugelassene Verbindung zur Hemmung der N-Glykan-Biosynthese oder von STT3B identifiziert. Durch In-silico-Screening von FDA-zugelassenen Molekülen konnten die Forscher erfolgreich nachweisen, daß ICG ein potenzieller STT3B-Inhibitor zur Hemmung der N-Glykan-Biosynthese ist. ICG ist ein wasserlöslicher Nahinfrarot-Fluoreszenzfarbstoff, der seit Jahrzehnten häufig als Diagnosemittel zur Messung der Leberfunktion, des Herzzeitvolumens und der Augenangiographie beim Menschen eingesetzt wird59,60.

Es hat sich herausgestellt, daß ICG den AMA-induzierten Zelltod wirksam verhindern und die Resistenz gegen AMA in vitro erhöhen kann. Der enterohepatische Zyklus von AMA könnte den klinischen Verlauf einer Amatoxinvergiftung bei Menschen und Tieren erheblich beeinflussen61. Die Unterbrechung des enterohepatischen Kreislaufs wie die Gallendrainage ist zu einer alternativen Entgiftungsmethode geworden62. Da ICG den Eintritt von AMA verhindern kann, kann ICG die AMA-Rezirkulation blockieren und die AMA-Toxizität verhindern, was teilweise die therapeutische Wirkung von ICG erklärt.

HepG2-Zellen wurden zur Untersuchung der Hepatotoxizität63 und der molekularen Mechanismen der AMA-Zytotoxizität7 verwendet. HepG2-Zellen zeigen eine relativ geringe Expression von OATP1B364 und exprimieren kein NTCP65, während diese beiden Proteine als Haupttransporter für die AMA-Aufnahme gelten. Daher weisen HepG2-Zellen im Vergleich zu anderen gängigen Laborzelllinien oder primären Hepatozyten eine geringere Empfindlichkeit gegenüber AMA-Zytotoxizität auf66. Dennoch können in unserer Studie HepG2-Zellen immer noch durch AMA abgetötet und durch ICG gerettet werden, was darauf hindeutet, daß es unbekannte Transporter gibt, die für den AMA-Transport in Zellen verantwortlich sind.

Interessanterweise wurde ICG auch durch OATP1B3 und NTCP67 in Zellen transportiert. Unsere Ergebnisse schließen die Möglichkeit aus, dass ICG hauptsächlich durch kompetitive Bindung mit OATP1B3 und NTCP wirkt, um die Toxizität von AMA zu blockieren. Darüber hinaus zeigte unsere Studie, dass ICG ähnliche Schutzwirkungen in AMA-behandelten primären Hepatozyten-Organoiden hat. In dieser Studie haben die Wissenschaftler sich auf das 4-Stunden-Intervall zwischen der AMA-Injektion und der ICG-Behandlung konzentriert, da dieses 4-Stunden-Intervall das gleiche war wie das, das in früheren Studien verwendet wurde, um tatsächliche Vergiftungs- und Behandlungsszenarien beim Menschen nachzuahmen5,52,68.

Dies wird es zukünftig erleichtern, die gewonnenen Ergebnisse mit denen anderer hinsichtlich der Wirksamkeit von ICG bei der Behandlung von AMA-Toxizität zu vergleichen. ICG hat ein großes Potenzial für die Behandlung von AMA-Vergiftungen bei Mäusen gezeigt und die ICG-Behandlung kann AMA-induzierte Schäden in Leber und Niere, den beiden wichtigsten AMA-Zielorganen, erheblich abschwächen, was zu einer Verbesserung des Überlebens führt. Darüber hinaus wurde beobachtet, daß ICG seine Behandlungswirkung auf die AMA-Toxizität verliert, wenn es 8 und 12 Stunden nach der AMA-Injektion verabreicht wird.

Dies kann daran liegen, daß AMA in den ersten Stunden der Zytotoxizität irreversible Schäden verursacht hat, die durch eine ICG-Behandlung nicht behoben werden können. Dies legt nahe, daß ICG so früh wie möglich während der Behandlung verabreicht werden sollte. Insgesamt zeigte sich, daß durch die Kopplung der funktionellen genomischen Charakterisierung des gesamten Genoms mit der In-silico-Arzneimittelvorhersage schnell medizinisch relevante Prozesse definieren lassen und dann gezielt darauf abzielen können.

Ethische Aussage

Alle Tierversuche wurden vom Institutional Animal Care and Use Committee (IACUS) der Sun Yat-Sen-Universität genehmigt (Genehmigungsnummer: SYSU-IACUC-2022-000469).

Zelllinien und Zellkultur

HAP1-Zellen wurden von Horizon Discovery erhalten. HEK293T- und HepG2-Zelllinien wurden von der American Type Culture Collection (ATCC) erhalten. Alle Zelllinien wurden routinemäßig mit dem Mycoplasma Stain Assay Kit (#C0296, Beyotime) mykoplasmenfrei getestet und durch Short Tandem Repeat (STR)-Profiling authentifiziert. HAP1-Zellen wurden in Iscoves modifiziertem Dulbecco-Medium (IMDM; Gibco), ergänzt mit 10 % fötalem Rinderserum (FBS; NEWZERUM) und 1 % Penicillin-Streptomycin (Hyclone), kultiviert. HEK293T- und HepG2-Zellen wurden in Dulbeccos modifiziertem Eagle-Medium (DMEM, Gibco), ergänzt mit 10 % FBS und 1 % Penicillin-Streptomycin, kultiviert.

Zelllebensfähigkeitstest

Trypsinisierte Zellen (1,5 × 104) wurden in jede Vertiefung einer Platte mit 96 Vertiefungen ausgesät. Nach 24 Stunden wurden verschiedene Konzentrationen der Verbindungen hinzugefügt und die Zellen wurden weitere 48 oder 72 Stunden lang inkubiert. KIF (#K919109) und NGI-1 (#N873007) wurden von Macklin erhalten. Nach der Inkubation wurde das Medium aus jeder Vertiefung abgesaugt und 100 μl frisches Medium, das ein 10 %iges Cell Counting Kit-8 (CCK8, #K1018, APExBIO) enthielt, in die Vertiefungen gegeben und 2 Stunden lang bei 37 °C inkubiert.

Die Absorption wurde bei 450 nm mit einem Mikroplatten-Spektrophotometer (BioTek) gemessen. Die Zellüberlebensdaten jeder medikamentös behandelten Gruppe wurden auf die Vehikelgruppe normalisiert und die Überlebensdaten als „relative Zelllebensfähigkeit“ ausgedrückt. Die Lebensfähigkeit von Calcein/PI-Zellen wurde gemäß dem Protokoll des Herstellers (#C2015M, Beyotime) bewertet und unter Fluoreszenzmikroskopie (Nikon) beobachtet.

Lentivirus-Produktion

Um Lentivirus zu erzeugen, wurde die Brunello-Bibliothek (#73179, Addgene) mit den Verpackungsplasmiden pMD2.G (#12259, Addgene) und psPAX2 (#12260, Addgene) co-transfiziert. Kurz gesagt wurde ein T75-Kolben mit 80 % konfluenten HEK293T-Zellen in Opti-MEM (#31985070, Gibco) unter Verwendung von 8,8 μg der lentiCRISPRv2-Plasmidbibliothek, 4,4 μg pMD2.G, 6,7 μg psPAX2 und 32 μL Lipo8000TM (#C0) transfiziert 533 , Beyotime). Die Zellen wurden 8 Stunden lang inkubiert und dann wurde das Medium durch DMEM mit 10 % FBS und 1 % Penicillin-Streptomycin ersetzt. Das Virus wurde 48 Stunden nach der Transfektion geerntet, das Medium wurde aufgefüllt und eine zweite Ernte erfolgte 72 Stunden nach der Transfektion. Virusüberstände wurden gesammelt und durch einen 0,45-μm-Filter mit extrem geringer Proteinbindung (Merck Millipore) filtriert. Aliquote wurden bei –80 °C gelagert.

Zelltransduktion mithilfe der Brunello-Bibliothek

Infektionen wurden in einer 12-Well-Platte mit 2,0 × 106 Zellen pro Well durchgeführt. In jede Vertiefung wurden unterschiedliche Virenmengen gegeben. Nach 24 Stunden wurden die Zellen trypsiniert und jede Vertiefung in zwei Vertiefungen aufgeteilt. Und ein Replikat wurde 3 Tage lang mit 1 μg/ml Puromycin (#P8230, Solarbio) behandelt, bis unter Bedingungen ohne Virus keine lebensfähigen Zellen mehr vorhanden waren. Abschließend wurde die Lebensfähigkeit der Zellen für jede Bedingung mithilfe eines CCK8-Assays quantifiziert. Das Virusvolumen mit einem MOI von etwa 0,3 wurde für das nächste groß angelegte Screening verwendet.

HAP1-Zellen-AMA-Resistenztest

Um die Abdeckung von >500 Zellen sicherzustellen, die jeweils 77.441 sgRNA mit einer MOI ≈ 0,3 exprimieren, wurden 1,3 × 108 HAP1-Zellen wie oben beschrieben unter Verwendung von 12-Well-Platten mit 2 × 106 Zellen pro Well transduziert. Puromycin wurde den Zellen 24 Stunden nach der Transduktion zugesetzt und 7 Tage lang beibehalten. Die Zellen wurden nach 3-tägiger Inkubation mit Puromycin in größeren Flaschen zusammengefasst. Am 7. Tag wurden die Zellen in zweifacher Ausführung in die Behandlungsbedingungen aufgeteilt, mit einem Minimum von 4 × 107 Zellen pro Wiederholung. Zwei Replikate wurden in einem Komplettmedium mit 1,5 μM AMA (#A4548, APExBIO) kultiviert, und zwei weitere Replikate wurden in einem regulären Komplettmedium kultiviert. Es wurden entweder Replikate durchgeführt oder alle 2–3 Tage wurde frisches Medium hinzugefügt. Die mutierten Zellpools wurden 7 Tage lang mit AMA behandelt und die überlebenden Zellen wurden gewonnen und für die genomische DNA-Analyse geerntet.

Genomische DNA-Sequenzierung

Genomische DNA (gDNA) wurde mit TIANamp Genomic DNA Kits (#DP304, TIANGEN) gemäß dem Protokoll des Herstellers isoliert. Die sgRNA-Sequenzen wurden mit High-Fidelity 2X PCR Master Mix (#M0541L, NEB) amplifiziert. PCR-Produkte wurden mit Illumina (PE150) von Novogene Technology (Peking, China) gelextrahiert, quantifiziert, gemischt und sequenziert. Die Anreicherung von sgRNAs und Genen wurde mit MAGeCK (Version 0.5.9.2)69 analysiert, indem die Lesezahlen von Zellen nach der AMA-Selektion mit den Zahlen aus passenden, nicht ausgewählten Zellpopulationen verglichen wurden.

Genontologie (GO) und Signalweganreicherungsanalyse

GO-Begriffe im Bildschirm wurden mit DAVID (https://david.ncifcrf.gov/summary.jsp) analysiert. KEGG-Pfade wurden mit Webgestalt (http://www.webgestalt.org/) analysiert. Anreicherungsnetzwerkpfade wurden mithilfe von String (https://cn.string-db.org/) und Cytoscape (https://cytoscape.org/) generiert.

Etablierung von Knockout-Zelllinien

sgRNAs aus der Elternbibliothek wurden in pLentiCRISPRv2 (# 52961, Addgene) kloniert. Die Kontroll-sgRNA wurde aus der Elternbibliothek verwendet (Ergänzungstabelle 1). Lentiviren wurden wie oben beschrieben hergestellt und transduzierte HAP1- oder HepG2-Zellen wurden 24 Stunden nach der Infektion mit Puromycin selektiert. Nach 7 Tagen wurde Puromycin entfernt und die Zellen konnten sich vor der Analyse drei weitere Tage lang erholen.

RNA-Extraktion und quantitative Echtzeit-PCR-Analyse

Die Gesamt-RNA wurde mit einem RNA Quick Purification Kit (#RN001, YIBIN) extrahiert. Die cDNA wurde aus 500 ng Gesamt-RNA mit PrimeScript RT Master Mix (#RR037A, Takara) gemäß den Anweisungen des Herstellers synthetisiert. Quantitative PCR (qPCR) wurde mit TB Green (#RR820A, Takara) gemäß dem Protokoll des Herstellers mit LightCycler96 (Roche) durchgeführt.

Hochleistungsflüssigkeitschromatographie (HPLC)

Die HPLC-Analyse wurde mit SHIMADZU LC-20AT und einer 250 mm  ×  4,6 mm Flüssigkeitschromatographiesäule (5  μm, Phenomenex) durchgeführt. Ammoniumacetat (50 mM Essigsäure, pH 5,5), Acetonitril und Methanol (80/10/10; v/v/v) wurden nach einer früheren Studie als mobile Phase verwendet70. Eine isokratische Elution wurde mit einer Flussrate von 1,0 ml/min und einer Säulentemperatur von 35 °C durchgeführt. Insgesamt wurden 2 × 107 Zellen, die 8 h lang mit AMA behandelt wurden, gesammelt und dann durch Ultraschallbehandlung bei 200 W (3 s Arbeit/3 s Pause) für 1 min auf Eiswasser aufgebrochen. Diese Mischung wurde 30 Minuten lang bei 15.000 g zentrifugiert. Der Überstand wurde gesammelt und durch einen 0,22-μm-Filter (Merck Millipore) filtriert. Insgesamt wurden 10 μL Probe in das HPLC-System injiziert. Für quantitative Analysen wurden Chromatogramme bei 303 nm integriert. Die Peakfläche wurde mit der LabSolutions-Software (Version 1.26) analysiert.

Western-Blot-Analyse

Die Zellen wurden in einem Lysepuffer (#FD009, Fdbio) geerntet, der einen Proteaseinhibitor-Cocktail (Roche) enthielt. Die gesamten Zelllysate wurden 10 Minuten lang bei 4 °C und 15.000 g zentrifugiert, um Zelltrümmer zu entfernen. Die Proteinkonzentrationen wurden mit dem BCA Protein Assay (#P0010, Beyotime) bestimmt. Die Proteinüberstände wurden mit 5×Ladepuffer (FD006, Fdbio) gemischt und 10 Minuten lang auf 100 °C erhitzt. Die Proteine (20 μg) wurden auf 10 % SDS-Polyacrylamidgelen elektrophoretisch aufgetrennt, auf PVDF-Membranen übertragen und über Nacht bei 4 °C mit spezifischen Primärantikörpern inkubiert. Nach dem Waschen wurden die Membranen 1 Stunde lang mit Meerrettichperoxidase (HRP)-konjugierten Sekundärantikörpern inkubiert. Immunoblots wurden mit dem ChemiDocTM-Bildgebungssystem (Bio-Rad, Version 2.4.0.03) unter Verwendung des verbesserten Chemilumineszenzsubstrats (FD8000, Fdbio) sichtbar gemacht.

Für den Proteinnachweis wurden die folgenden Antikörper verwendet: monoklonaler Maus-Antikörper, der OATP1B3 erkennt (#66381-1-Ig, 1:5000, Klon-Nr. 1D9A4), monoklonaler Maus-Antikörper, der GRP78 erkennt (#66574-1-Ig, 1:5000, Klon-Nr .1D6F7), polyklonaler Kaninchen-Antikörper, der IRE1 erkennt (#27528-1-AP, 1:1000), monoklonaler Maus-Antikörper, der GM130 erkennt (#66662-1-Ig, 1:5000, CloneNo.2A4F11), polyklonaler Kaninchen-Antikörper, der ARF4 erkennt( #11673-1-AP, 1:1000) wurden von Proteintech erworben. Der polyklonale Kaninchen-Antikörper, der NTCP erkennt (#ABP53103, 1:1000), wurde von Abbkine erworben. Der Mausantikörper, der β-Tubulin erkennt (#FD0064, 1:5000), wurde von Fdbio erworben. Ziegen-Anti-Maus-IgG(H + L)-HRP (#BS12478, 1:5000) und Ziegen-Anti-Kaninchen-IgG(H + L)-HRP (#BS13278, 1:5000) wurden von Bioworld gekauft.

In-silico-Screening von FDA-zugelassenen Medikamenten

Die beiden Bibliotheken von FDA-zugelassenen Verbindungen wurden von ZINC (1615 Liganden) bzw. Drugbank (1586 Liganden) heruntergeladen. Die chemische Datenbank wurde mithilfe des MMFF94-Kraftfelds (steilster Abstieg) im Open-Source-Softwarepaket OpenBabel (http://openbabel.org/) energieminimiert und im mol2-Format gespeichert. Die Verbindungsbibliothek wird dann vorverarbeitet und im pdbqt-Format mit Prepare_ligand4.py aus den AutoDock-Tools (https://ccsb.scripps.edu/mgltools/) gespeichert.

Die Kristallstruktur von STT3B wurde aus RCSB PDB (PDB-ID: 6S7T)71 erhalten. Das STT3B wurde von PyMol (http://pymol.org/2/) vorverarbeitet, um Wasser und Liganden zu entfernen, und von AutoDock-Tools, um polare Wasserstoffe und Kollman-Ladung hinzuzufügen. Nach diesen Vorgängen wurde STT3B dann im pdbqt-Format gespeichert. Im STT3B gibt es zwei Bindungstaschen. Das Rasterfeld der Bindungsstelle wurde mithilfe der Rastereinstellungsfunktion der AutoDock-Tools visuell definiert. Die Gitterbox aus zwei Bindungstaschen wurde durch gebundenes Peptid und gebundenes Dolichylphosphat in 6S7T definiert. Für die STT3B-Tasche 1 betrugen die Gittergrößenabmessungen 23,25 × 22,5 × 24, wobei der Punkt (173,747, 153,363, 152,254) als Mittelpunktskoordinaten festgelegt wurde; Für die STT3B-Tasche 2 betrugen die Gittergrößenabmessungen 23,25 × 24,75 × 24,75, wobei der Punkt (159,012, 143,831, 166,532) als Mittelpunktkoordinaten festgelegt wurde.

Der Andockvorgang wurde mit Smina (einem Zweig von AutoDock Vina, https://vina.scripps.edu/)72 durchgeführt. Molekulare Docking-Parameter werden wie folgt verwendet: Vollständigkeit = 8, num_modes = 10, Energiebereich = 3, min_rmsd_filter = 1. Es wurde ein schrittweises Screening von FDA-zugelassenen Arzneimitteln in den ZINC- und Drugbank-Datenbanken durchgeführt. Zunächst wurden die Verbindungen jeweils an die beiden Bindungstaschen von STT3B angedockt. Dann wurden die Verbindungen nach ihrer minimierten Affinität eingestuft. Es wurden die 100 besten Liganden mit minimierter Affinität erhalten. Anschließend wurde der vorhergesagte IC50-Wert der Verbindungen mit der auf einem neuronalen Netzwerk basierenden Bewertungsfunktion (NNScore2)73 berechnet. Am Ende wurden die 34 besten Verbindungen für die In-vitro-Validierung ausgewählt. Aufgrund der Nichtverfügbarkeit einiger Verbindungen wurden nur 24 Verbindungen auf ihren zellulären Schutz gegen AMA-Toxizität getestet.

Organoidkultur

Die Leberorganoide der Mäuse wurden gemäß zuvor beschriebenen Protokollen mit einigen Modifikationen erzeugt74,75. Kurz gesagt, die Lebern von CD-1-Mäusen (20–30 g) wurden in Würfel von 1–2 mm3 zerlegt und zweimal in PBS gewaschen. Die Gewebefragmente wurden in Verdauungspuffer (1 mg/ml Kollagenase I, 0,1 mg/ml Hyaluronidase, 0,1 mg/ml DNase I) 1,5 h lang bei 37 °C inkubiert. Nach der Verdauung wurde die Gewebesuspension mit einem 40-μm-Zellsieb filtriert, anschließend zentrifugiert und mit PBS resuspendiert. Einzelzellsuspensionen wurden zunächst mit hoher Dichte ausgesät und nach etwa einer Woche in vollständigem Organoidmedium (DMEM/F12 mit 5 µg/ml Insulin, 250 µg/ml Amphotericin B, 10 µg/ml Gentamicin, 0,125 µg) mit niedrigerer Dichte erneut ausgesät /ml EGF, 25 ng/ml Hydrocortison und 10 μm Y-27632).

Intrazelluläre Lokalisierungsanalyse

HAP1- und HepG2-Zellen wurden bis zu einer Konfluenz von ~50 % in die Kulturschale ausplattiert und 12 Stunden lang mit ICG (#H20055881, Dandong Pharmaceutical Company) inkubiert. Die Zellen wurden dreimal mit PBS gewaschen und ER wurde gemäß dem Protokoll des Herstellers (#C1042S, Beyotime) mit ER-Tracker-Grün markiert, und der Zellkern wurde mit 4′,6-Diamidino-2-phenylindol (DAPI) blau gefärbt. Fluoreszenzbilder wurden durch konfokale Laser-Scanning-Mikroskopie erhalten.

Luciferase-Reporter-Assay

Die ER-LucT-Sequenz und die LucT-Sequenz aus einer früheren Studie49 wurden von Kidan Bio Co. Ltd. synthetisiert und in pcDNA3.1(+) kloniert. Plasmidtransfektionen wurden mit Lipo8000TM durchgeführt. Nach 48 Stunden wurde ICG zu den transfizierten HAP1- und HepG2-Zellen gegeben. Luciferase-Aktivitätstests wurden mit dem Firefly Luciferase Reporter Gene Assay Kit gemäß dem Protokoll des Herstellers (#RG005, Beyotime) mit dem Lumineszenz Quick Read (Promega) durchgeführt.

Mäuse

Alle Mäuse waren männliche CD-1-Mäuse mit einem Gewicht von 20–30 g (4–5 Wochen alt) und wurden vom Laboratory Animal Center der Sun Yat-Sen-Universität gekauft. Die Mäuse wurden in einer speziellen pathogenfreien Einrichtung mit kontrollierter Temperatur (23 ± 2 °C), Luftfeuchtigkeit (50–65 %) und einem Hell-Dunkel-Zyklus von 12 Std./12 Std. gehalten. Mäuse hatten freien Zugang zu Futter und Wasser.

Körpergewicht, motorische Aktivität, Atemnot und das allgemeine Wohlbefinden der Tiere wurden täglich beobachtet. Die Mäuse wurden gemäß den von der IACUC zugelassenen Anästhesiemethoden mit 1 % Pentobarbital-Natrium und anschließender Zervixluxation eingeschläfert.

Kurzzeitstudie an Mäusen (24 h)

Die Mäuse wurden zufällig in 4 Gruppen verteilt (n = 6) und wie folgt behandelt: (i) Kontrollgruppe (0,9 % NaCl, i.p. bei 0, 4, 8 und 12 Stunden); (ii) ICG-Gruppe (0,9 % NaCl, i.p. bei 0 h; 5 mg/kg ICG, i.v. bei 4, 8 und 12 h); (ii) AMA-Gruppe (0,33 mg/kg AMA i.p. bei 0 h; 0,9 % NaCl, i.v. bei 4, 8 und 12 h); (iii) AMA + ICG-Gruppe, (0,33 mg/kg AMA i.p. bei 0 h; 5 mg/kg ICG i.p. bei 4, 8 und 12 h).

Langzeitstudie an Mäusen (30 Tage)

Die Mäuse wurden zufällig in 4 Gruppen eingeteilt (n = 6) und demselben Verabreichungsprotokoll wie in der Kurzzeitstudie unterzogen. Körpergewicht, motorische Aktivität, Atemnot und allgemeines Wohlbefinden der Tiere wurden 30 Tage lang täglich beobachtet.

In-vivo-Fluoreszenzbildgebung

Insgesamt wurden 5 mg/kg ICG intravenös injiziert und Bilder wurden 0, 10, 20, 40, 60 und 120 Minuten nach der Injektion mit einem In-vivo-Bildgebungssystem (PerkinElmer) aufgenommen.

Blutbiomarker

24 Stunden nach der AMA-Injektion wurden alle Tiere betäubt und eingeschläfert. Das Blut wurde in EDTA-haltige Röhrchen entnommen und sofort 10 Minuten lang bei 3000 g (4 °C) zentrifugiert. Der Plasmaüberstand wurde in Röhrchen gesammelt und bis zur Bestimmung bei –80 °C gelagert. AST, ALT, ALP, BUN und Cre wurden vom Guangdong Engineering & Technology Research Center for Disease-Model Animals der Sun Yat-sen University gemessen.

Histologische Analyse von Leber und Niere

Nach der Blutentnahme wurden Leber und Nieren entnommen und gewogen. Leber- und Nierensegmente wurden zur H&E-Färbung durch Servicebio-Technologie in 4 % Paraformaldehyd gelegt. Der Grad der Entzündung und der Nekrose der Objektträger wurde blind anhand des folgenden Kriteriums halbquantifiziert: Grad 0 = keine Veränderung gegenüber dem Normalwert; Grad 1 = sehr mild (die Veränderungen liegen knapp außerhalb des normalen Bereichs); Grad 2 = leicht (Läsionen können beobachtet werden, sind aber nicht schwerwiegend); Grad 3 = mittel (Die Läsionen sind offensichtlich und wahrscheinlich schwerwiegender) und Grad 4 = schwer (die Läsion hat das gesamte Gewebe und Organ besetzt).

Lektinfärbung

Leberschnitte aus verschiedenen Mäusegruppen wurden geschnitten, entparaffiniert und 30 Minuten lang bei Raumtemperatur mit verdünnten Lektinen gefärbt. Fluorescein-SNA (bindet Sialinsäure, FL-1301-2, 1:200) und Fluorescein-PHA-L (bindet komplexe Glykane, #FL-1111-2, 1:200) wurden von Vector Laboratories erworben. Die Objektträger wurden dann mit DAPI gefärbt und zweimal in PBST (phosphatgepufferte Kochsalzlösung mit Triton X-100) gewaschen und mittels Fluoreszenzmikroskopie (Nikon) abgebildet.

Statistik und Reproduzierbarkeit

Zur Vorbestimmung der Stichprobengröße wurde keine statistische Methode verwendet. Es wurden keine Daten von den Analysen ausgeschlossen. Die Daten werden als Mittelwert ± Standardabweichung (S.D.) dargestellt. Statistische Analysen wurden mit der GraphPad Prism 9-Software (Version 9.0.0) durchgeführt. p < 0,05 wurde als statistisch signifikant angesehen. *p < 0,05; **p < 0,01; ***p < 0,001; ****p < 0,0001; ns, nicht signifikant. In den Legenden wurden biologische Replikate und die Anzahl unabhängiger Experimente angegeben. Alle Experimente, die als repräsentative mikroskopische Aufnahmen oder Gele präsentiert wurden, wurden mindestens dreimal mit ähnlichen Ergebnissen wiederholt.

Zusammenfassung der Berichterstattung

Weitere Informationen zum Forschungsdesign finden Sie in der mit diesem Artikel verlinkten Nature Portfolio Reporting Summary.

Datenverfügbarkeit

Die in dieser Studie generierten DNA-Sequenzierungsdaten wurden in der Gene Expression Omnibus (GEO)-Datenbank unter dem Zugangscode GSE226447 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE226447) hinterlegt. . ZINC (https://zinc20.docking.org/) und Drugbank (https://go.drugbank.com/) sind öffentlich verfügbare Datensätze. Die Daten, die die Ergebnisse dieser Studie stützen, sind im Artikel und in der Datei mit ergänzenden Informationen verfügbar. Quelldaten werden in diesem Dokument bereitgestellt. Quelldaten werden mit diesem Dokument bereitgestellt.

Quelle

Kleine Inseln und große biogeografische Barrieren haben bei indopazifischen Nektarvögeln zu gegensätzlichen Artbildungsmustern geführt.

Männlicher Grünrücken-Nektarvogel (Cinnyris jugularis)

Vögel des Indopazifik haben Biologen viele grundlegende Erkenntnisse geliefert. Diese Studie liefert Beweise für eine starke phylogeographische Struktur bei zwei Nektarvogelarten aus dem Herzen dieser Region, dem Olivenrücken-Nektarvogel Cinnyris jugularis und dem schwarzen Sunbird Leptocoma aspasia. Die Forscher bewerteten die Populationsdivergenz anhand von morphologischen, Gefieder-, bioakustischen und molekularen Daten (mitochondriale ND2/ND3). Ihre Ergebnisse deuten darauf hin, daß der Sonnenvogel mit Olivenrücken als mehrere Arten anerkannt werden sollte, da Vögel aus Sulawesi und dem Sahul-Schelf eng miteinander verwandt, aber weit von denen in anderen Regionen getrennt sind. Darüber hinaus liefert die Studie Beweise für eine endemische Art auf den Wakatobi-Inseln, einem Archipel von Tiefseeinseln vor Südost-Sulawesi. Daß ein kleiner Vogel ein Verbreitungsgebiet von Sulawesi bis Australien aufweisen konnte, während er innerhalb dieses Verbreitungsgebiets auf einem kleinen Archipel auseinanderging, veranschaulicht das komplexe Zusammenspiel zwischen Ausbreitung und Artenbildung. Die genetischen Daten des Schwarzen Sonnenvogels deuten auch auf eine unbekannte Populationsstruktur hin, trotz einer relativ schwachen Gefiederdivergenz. Schwarze Sonnenvögel in Sulawesi sind wahrscheinlich eine andere Art als die in Neuguinea, mit einer durchschnittlichen genetischen Distanz von 9,1%. Die aktuelle Taxonomie legt nahe, daß diese Nektarvogel-Arten klassische biogeografische Barrieren überschreiten, aber die Forschungsergebnisse deuten darauf hin, daß diese Barrieren nicht einfach umgangen werden können.

Wallacea ist eine zentralindonesische Region, die aus Inseln besteht, die durch tiefes Wasser getrennt sind und zwischen den viel flacheren Kontinentalsockeln Sunda und Sahul liegen (Merrill, 1924; Dickerson et al., 1928). Aufgrund von Änderungen des Meeresspiegels während der Vereisung (Voris, 2000) wirkten die Grenzen zwischen diesen kontrastierenden Wassertiefen als Barrieren für die Ausbreitung vieler Organismen, was zu deutlichen Unterschieden bei den Tieren auf beiden Seiten führte (Lohman et al., 2011). . Die Wallacean-Inseln spielten eine wichtige Rolle in der Evolution von Singvögeln und boten Wege für die Ausbreitung und Strahlung, nachdem die Gruppe in Australien entstanden war (Moyle et al., 2016). Die größte Insel von Wallacea, Sulawesi, hat eine komplexe geologische Geschichte, die ihre ausgeprägten Muster des biologischen Endemismus geprägt hat (Michaux & Ung, 2021). Die westliche Grenze zwischen Wallacea und dem Sunda-Schelf ist als Wallace-Linie bekannt (Wallace, 1863; Huxley, 1868), obwohl Wallace Schwierigkeiten hatte, zu entscheiden, wo er seine Linie relativ zu Sulawesi positionieren sollte (Ali & Heaney, 2021) und diese Insel als „anomal“ betrachtete “ (Walace, 1880). Die östliche Grenze zwischen Wallacea und dem Sahul-Schelf wurde erstmals von Heilprin (1887) als biogeografische Barriere beschrieben, ist heute aber am besten als Lydekker-Linie bekannt (Lydekker, 1896; Ali & Heaney, 2021). Als Übergangszone zwischen auffallend unterschiedlichen Biotas (Merrill, 1924; Dickerson et al., 1928) hat Wallacea das Gebiet der Biogeographie mit vielen grundlegenden Erkenntnissen ausgestattet (Wallace, 1860, 1863), und die Arbeit in der Region verbessert unsere weiterhin Verständnis der Evolutionstheorie im Allgemeinen sowie der Evolutionsgeschichte vieler verschiedener Organismen (Moyle et al., 2016; Rowe et al., 2019; Hardianto et al., 2021; Purnomo et al., 2021).

Wallacea gilt als Hotspot bedrohter Biodiversität (Myers et al., 2000). Die Bedeutung der Wallacean-Biodiversität wird immer deutlicher: Die neueste Ausgabe des aktuellen Nachschlagewerks zu den Vögeln der Region (Eaton et al., 2021) erkennt 27 zusätzliche endemische Arten im Vergleich zur ersten Ausgabe an, die etwas mehr als vier Jahre zuvor veröffentlicht wurde . Eatonet al. (2021) sortierten ihre taxonomischen Empfehlungen in zwei Kategorien: Splits und „Limbo-Splits“, die „mögliche Splits sind, die entweder in der Literatur erwähnt wurden, aber der Meinung der Wissenschaftler nach schwach oder unzureichend sind, oder sie wurden im Allgemeinen nicht in der früheren Literatur erwähnt, und die Forscher sind der Meinung, daß das Potenzial für eine Aufspaltung beträchtlich ist“ (Rheindt, 2021). Die überwiegende Mehrheit der neuen Wallacean-Taxa, einschließlich Splits und außergeöhnlichen Splits , ist auf bestimmte Inseln beschränkt (Eaton et al., 2021) und daher streng allopatrisch. Die konsistente Abgrenzung allopatrischer Taxa bleibt herausfordernd, selbst wenn Daten verfügbar sind (Tobias et al., 2021). Daher sind noch spezifische und detaillierte Untersuchungen erforderlich, um die Vielfalt der Vögel auf den vielen Inseln von Wallacea zu klären. Eine Lösung für das Problem der Allopatrie (z. B. Cheke et al., 2001; Mayr & Diamond, 2001) besteht darin, sich mit „Superspezies“ zu befassen, definiert als monophyletische Gruppen allopatrischer Populationen, von denen angenommen wird, dass sie reproduktiv isoliert sind, basierend auf einem Vergleich mit sympatrischen Arten (Amadon, 1966).

Die Inseln von Wallacea sind unterschiedlich in Größe und Isolationsgrad, was diese Region zu einem idealen „natürlichen Labor“ (Whittaker et al., 2017) für die Untersuchung biogeografischer Fragestellungen macht (z. B. Ó Marcaigh et al., 2021a, b, 2022) . Beispielsweise gibt es in der Region Südost-Sulawesi kontinentale Landbrückeninseln wie Wawonii (oder Wowoni), Kabaena, Muna und Buton (oder Butung), die auf dem Landweg mit dem viel größeren Sulawesi und geologisch miteinander verbunden waren jüngsten Vergletscherungen (Hall, 2013). Andererseits sind die kleineren Wakatobi-Inseln (auch als Tukangbesi-Inseln bekannt) seit ihrer Entstehung keiner größeren Landmasse zugeordnet worden (Nugraha & Hall, 2018). Die Wakatobi-Inseln sind als wichtiges Vogelgebiet anerkannt (BirdLife International, 2021), aber trotz ihrer Bedeutung erhielten sie bis vor kurzem wenig ornithologische Aufmerksamkeit (O’Connell et al., 2020). Obwohl die Wakatobi-Inseln nur 27 km von Buton entfernt sind, beherbergen sie mehrere endemische Arten (Kelly et al., 2014; O’Connell et al., 2019c), ein Beweis für eine bedeutende evolutionäre Unabhängigkeit von Sulawesi und seinen Landbrückeninseln. Eine weitere kleine Insel, Menui (oder Manui), liegt nördlich von Wawonii. Der Kanal zwischen Menui und Sulawesi ist geologisch besonders komplex, scheint aber während der pleistozänen Vergletscherung keine Landbrücke gebildet zu haben (Nugraha & Hall, 2018).

Die Nektarvögel (Nectariniidae) sind eine Familie kleiner Sperlingsvögel mit einer Verbreitung, die sich von Afrika im Westen bis nach Australien im Osten erstreckt. In einer Region, in der Vögel die Grundlage für viele entscheidende evolutionäre Arbeiten lieferten, haben Nektarvögel oft besondere Aufmerksamkeit auf sich gezogen (z. B. Jardine, 1843; Wallace, 1855; Shelley, 1876–1880). Viele weisen ein auffallend buntes Gefieder auf, das Taxonomen über ihre Vielfalt informiert hat (Cheke et al., 2001). Tatsächlich leiten die Nektarvögel als Gruppe „ihren Namen von ihrer hell getönten Kleidung ab, die in größerer Pracht erscheint, wenn sie von den Sonnenstrahlen bespielt wird (Sonnenvögel)“ (Jardine, 1843). In Bezug auf ihre Evolution bleibt noch viel zu klären, da Arten weiterhin auf der Grundlage neuer Informationsquellen wie Genetik und Bioakustik unterteilt werden (Rheindt, 2021). Unser Verständnis von Biodiversität entwickelt sich weiter, während wir weiterhin Abstammungslinien auf Artenebene dokumentieren und identifizieren (Fišer et al., 2018).

Quelle

Angriffe von Riesenhornissen (Vespa soror) lösen in Honigbienenkolonien (Apis cerana) frenetische Anti-Raubtier-Signale aus

Asiatische Honigbienen verwenden eine beeindruckende Reihe von Strategien, um ihre Nester vor Hornissenangriffen zu schützen, obwohl wenig darüber bekannt ist, wie Anti-Raubtier-Signale ihre Verteidigung koordinieren. Die Wissenschaftler verglichen vibroakustische Signalgebung und Abwehrreaktionen von Apis cerana-Kolonien, die entweder von der Gruppenjagd-Riesenhornisse Vespa soror oder der kleineren, einzeln jagenden Hornisse Vespa velutina angegriffen wurden.

Apis cerana-Kolonien produzierten unter hornissenfreien Bedingungen Zischen, kurze Stoppsignale und längere Pfeifen. Allerdings lösten Hornissen-Angriffsreize – und insbesondere V. soror-Arbeiterinnen – einen dramatischen Anstieg der Signalraten innerhalb der Kolonien aus.
Klanglandschaften waren kakophon, wenn V. soror-Räuber direkt außerhalb der Nester waren, teilweise wegen der frenetischen Produktion von Anti-Raubtierpfeifen, einem zuvor unbeschriebenen Signal. Antiprädatorpfeifen teilen akustische Eigenschaften mit Alarmschreien, Angstschreien und Panikrufen von Primaten, Vögeln und Erdmännchen.

Arbeiter, die Antiprädator-Töne erzeugen, legten ihre Nasonov-Drüse frei, was auf das Potenzial für multimodale Alarmsignale hindeutet, die Nestkameraden vor der Anwesenheit gefährlicher Hornissen warnen und Arbeiter zur Verteidigung zusammenstellen.
Gleichzeitige Beobachtungen von Nesteingängen zeigten eine Zunahme der Arbeiteraktivitäten, die eine wirksame Abwehr gegen Riesenhornissen unterstützen. Apis cerana-Arbeiter wenden flexibel ein vielfältiges Alarmrepertoire als Reaktion auf Angriffsattribute an, das die Merkmale ausgeklügelter Alarmrufe bei sozial komplexen Wirbeltieren widerspiegelt.

Im Gegensatz zu A. mellifera ist die Verwendung von vibroakustischen Signalen durch andere Honigbienenarten, die alle in Asien endemisch sind [66,67], nicht so gut untersucht. Aufgrund des starken Prädationsdrucks, dem asiatische Honigbienen ausgesetzt sind [68], haben sich die meisten Studien zu ihren vibroakustischen Signalen jedoch auf Alarmsignale konzentriert.

Hornissen (Gattung Vespa) sind die hartnäckigsten und schädlichsten Räuber der asiatischen Honigbienen [68–72], und frühe Studien haben die hörbaren Pfeifen und Zischen festgestellt, die Kolonien machen, wenn sie von Hornissen angegriffen werden [47,68,70,73–77]. Stoppsignale sind bei der Gattung Apis weit verbreitet [39], ihre Funktion wurde jedoch in A. cerana nur bei den asiatischen Honigbienen untersucht.


Arbeiter von Apis cerana, die angebundenen Hornissen (lebend oder tot) ausgesetzt sind, passen die Merkmale der Stopsignale an, die sie als Reaktion auf Angriffsattribute erzeugen, und Signalempfänger sind weniger wahrscheinlich, Rekrutierungstänze durchzuführen oder die Sicherheit des Nestes zu verlassen [51,52]. Bei A. florea veranlaßt das Vorhandensein bedrohlicher Reize in der Nähe von Nestern Arbeiter zum Pfeifen, was wiederum Gruppenzischen auslöst [48]. Zischen wird erzeugt, wenn viele Arbeiter ihren Körper bewegen und ihre Flügel synchron als Reaktion auf mechanische Störungen oder Raubtierangriffe vibrieren, einschließlich der Belästigung durch Hornissen [48,68,77–80].


Zischlaute werden oft seriell erzeugt und können kürzer sein, wenn Hornissen vorhanden sind [48,77,80], aber A. cerana-Kolonien zischen auch, wenn keine Störungen erkennbar sind [80]. Obwohl die Funktion von Zischen nicht klar ist, wird es als aposematische Warnung für Raubtiere vorgeschlagen und kann auch die Aktivität von Nestgenossen reduzieren, um ihr Prädationsrisiko zu verringern [11,48,68,77,80]. Sowohl für Zisch- als auch für Stopsignale erhöhen Kolonien die Signalisierungsrate nach räuberischen Bedrohungen [48,51]. Daher verwenden asiatische Honigbienen diskrete Kategorien von vibroakustischen Alarmsignalen und Völker passen Signalparameter als Reaktion auf Angriffsattribute an. Es bleibt jedoch noch viel darüber zu entdecken, wie Honigbienen vibroakustische Signale verwenden, um das Verhalten von Antiprädatoren bei der Verteidigung ihrer Nester zu koordinieren.

Diese Studie untersucht das Signalrepertoire von A. cerana während natürlich vorkommender Angriffe durch zwei Hornissenprädatoren, die sich im Grad der Bedrohung für Kolonien unterscheiden. An dem Studienstandort in Vietnam ist der tödlichste Hornissenprädator, dem A. cerana begegnet, Vespa soror, eine riesige Hornisse, die Honigbienenkolonien durch Gruppenprädation dezimieren kann [81,82].

Ein erfolgreicher Angriff beginnt, wenn ein V. Soror-Scout Nestkameraden für eine Beutekolonie rekrutiert, wo sie gemeinsam viele der sich verteidigenden Honigbienen töten, ihr Nest besetzen und unverteidigte Brut ernten, um ihre Larven zu füttern.
Vespa soror ist nicht gut untersucht, aber morphologisch und verhaltensähnlich ist sie ihrer bekannteren Schwesterart, der Riesenhornisse Vespa mandarinia [70,71,81–87]. Im Gegensatz zu den beiden Arten von Riesenhornissen ist die Vespa velutina eine kleinere Hornisse, die einzeln jagt, indem sie einzelne Honigbienen vor Nestern schwebend erbeutet [72].


Im evolutionären Wettrüsten zwischen Räuber und Beute hat A. cerana mehrere Abwehrmechanismen auf Kolonieebene entwickelt, um Hornissenangriffe abzuwehren. Sie aggregieren oft als erster Schritt am Nesteingang [70,88,89], bei A. mellifera als „Bienenteppich“ bezeichnet [90–93]. Einmal angehäuft, können Arbeiter eine einzelne Hornisse in einen Ball von Hunderten von Bienen einhüllen, sie gleichzeitig überhitzen und ersticken [89, 94–96]. Apis cerana-Arbeiterinnen wenden Materialien (z. B. Tierkot in Vietnam, Pflanzenmaterial in Japan) um die Nesteingänge herum an, um Riesenhornissen abzuwehren, ein Abwehrverhalten, das nicht von kleineren Hornissen ausgelöst wird [82,97]. Gruppen von Arbeitern führen auch koordiniertes Körperschütteln als Reaktion auf Hornissen durch, eine visuell einschüchternde Darstellung, die Angreifer davon abhält, sich dem Nest zu nähern [77, 98–101].

Diese ausgeklügelten Abwehrmaßnahmen erfordern die rechtzeitige Erkennung von Räubern und die schnelle Aktivierung einer verteidigenden Belegschaft. Vibroakustische Signale spielen wahrscheinlich eine wichtige Rolle bei der Organisation dieser Antworten, da sie innerhalb von Nestern schnell zwischen Sendern und Empfängern übertragen werden [29,33].

Die Forscher haben umfassend vibroakustische Signale katalogisiert, die in Kolonie-Klanglandschaften erfasst wurden, als A. cerana-Arbeiterinnen auf den Angriff von zwei unterschiedlich gefährlichen Raubtieren reagierten:
V. soror, eine riesige Hornisse, die Gruppenangriffe auf Kolonien startet, und V. velutina, eine kleinere Hornisse, die einzeln jagt. Unsere Ergebnisse heben auffallende Unterschiede in der Signalantwort von A. cerana-Kolonien auf diese beiden Räuber hervor.

Kolonie-Klanglandschaften zeigen die Vielfalt von A. ceranas Repertoire an Alarmsignalen, einschließlich einer neuartigen Anti-Raubtier-Pfeife, die von Arbeitern hergestellt wurde, als V. soror-Arbeiter an den Nesteingängen anwesend waren. Gleichzeitig aufgezeichnete Videos von Nesteingängen zeigen, daß Veränderungen der Signalgebung auf Kolonieebene mit der Ankunft von Jagdhornissen und der Initiierung von Aktivitäten durch Arbeiterbienen verbunden sind, die die räuberspezifische Nestverteidigung unterstützen.

Eines der faszinierendsten Merkmale der tierischen Sozialität ist die Entwicklung gemeinsamer Signale, die Informationen übermitteln und Aktivitäten zwischen den Gruppenmitgliedern koordinieren [1–5]. Erbeutung ist ein großer Selektionsdruck für Tiere, die in auffälligen sozialen Gruppen leben, und die reichhaltigen Anti-Raubtier-Signale, die sie auslöst, können die Feinheiten der sozialen Kommunikation aufdecken [6,7]. Die Bedeutung von Signalen kann durch sofortige Reaktionen auf Bedrohungen durch Raubtiere aufgedeckt werden, sowohl bei der Erzeugung von Signalen durch alarmierte Personen als auch bei der Reaktion von Gruppenmitgliedern auf diese Signale.


Darüber hinaus sollte die Selektion die Signalvielfalt bei Arten begünstigen, die von Räubern gejagt werden, die sich in der Angriffsstrategie, dem Grad der Bedrohung, die sie für die Beute darstellen, oder der Reaktion der Beute unterscheiden [8,9]. Wichtig ist, daß bei sozialen Tieren, die kollektiv auf Raubtiere reagieren, Signale die Abwehr auf Gruppenebene organisieren [7,10,11].


Signale, die als Reaktion auf Raubtiere erzeugt werden, können den Raubtiertyp, die Dringlichkeitsstufe oder beides kodieren [12–15]. Diese Signale können diskret oder abgestuft sein, dh sie können unterschiedliche Merkmale aufweisen, die sie von anderen Signaltypen unterscheiden, oder sie können auf einem Kontinuum mit Zwischenformen variieren [9,16-18]. Schließlich können Antiprädatorsignale multimodal sein, was ihren Einfluß auf die Empfänger verfeinern, die Kommunikation in lauten Umgebungen unterstützen und Gruppenmitgliedern helfen kann, angemessen zu reagieren, wenn Angriffe von mehreren Arten von Raubtieren kommen [9,19–22].

Das sich abzeichnende Bild ist, daß man eine Tierart gut kennen muss, um zu verstehen, wie Gruppenmitglieder bei räuberischen Bedrohungen kommunizieren [9,23]. Akustische Überwachung ist eine hervorragende Möglichkeit, wertvolle Einblicke in die Signale zu gewinnen, die soziale Gruppen austauschen, wenn sie Raubtiere erkennen und Abwehrreaktionen koordinieren, insbesondere in Umgebungen, in denen Schall eine häufig genutzte Modalität ist und visuelle Beobachtung eine Herausforderung darstellt [24–28].

Honigbienen (Gattung Apis) sind ein wichtiges Modellsystem zur Erforschung der Signalnutzung innerhalb einer sozialen Gruppe aufgrund der Vielfalt von „Warnrufen“, die Koloniemitglieder austauschen, um ihre Aktivitäten zu koordinieren [29–33]. Honigbienen nehmen Geräusche entweder als Luftpartikelbewegungen wahr, die von Johnstons Organen in ihren Antennen erfasst werden, oder als vom Substrat übertragene Schwingungen, die von subgenualen Organen in ihren Beinen erfasst werden [34–36]. Daher werden von Bienen erzeugte Signale zusammenfassend als „vibroakustisch“ bezeichnet, da sie innerhalb von Völkern oft gleichzeitig als Luftschall und Substratvibrationen übertragen werden und die Wahrnehmungsweise nicht immer klar ist [32,33].

Die Wahrnehmung von Luftschall durch Honigbienen beschränkt sich derzeit auf die kurzen Impulse (weniger als 50 ms Dauer), die von schnatternden Arbeitern bei mehreren Apis-Arten abgegeben werden [37–45]. Im Gegensatz dazu wird eine Klasse von substratübertragenen Schwingungen, die „Warnrufe“ genannt werden, von Arbeitern in vielen Zusammenhängen erzeugt, einschließlich Reaktionen auf räuberische Bedrohungen [46–52], Reaktionen auf Bedingungen an Nahrungsquellen [39,40,53–58], während beim Schwärmen [31,59–63] und bei königinlosen [47].

Ein Warnruf entsteht, wenn eine Arbeiterin ihren Brustkorb vibriert und ihren Körper gegen ein Substrat drückt, um die Schwingung zu übertragen (Übersicht [32,33]), wodurch eine charakteristische harmonische Struktur erzeugt wird, wenn sie in Spektrogrammen visualisiert wird [31,48,51,56,64] . Von Arbeitern abgegebene Pfiffe wurden erstmals vor einem Jahrhundert beschrieben [65] und ihre Erzeugung und Funktion wurden am besten an der europäischen Honigbiene Apis mellifera untersucht. Zum Beispiel wird eine Untergruppe kurzer Pfiffe, die „Stopsignale“ genannt werden, von Arbeitern in A. mellifera-Nestern und -Schwärmen erzeugt;
in beiden sozialen Kontexten hemmen Stopsignale den Schwänzeltanz durch die Empfänger [49,53,54,57,63].

Innerhalb von Nestern reduzieren sie die Rekrutierung an gefährlichen Nahrungsquellen [49,50,58], während sie in Schwärmen die Rekrutierung an konkurrierende Neststandorte unterdrücken [63]. Bei A. mellifera haben Stopsignale eine durchschnittliche Dauer von 142–230 ms und Grundfrequenzen von 270–540 Hz, und sie werden oft gesendet, während sie signalisieren, daß Arbeiter ihre Köpfe gegen den Körper der Empfänger stoßen [39,40,54,56,58 ,64].


Abgesehen von gut charakterisierten Stopsignalen können die Merkmale von A. mellifera-Pfeifen auf verschiedene Weise variieren. Arbeiter produzieren oft Klänge, die viel länger sind als Stopsignale (z. B. im Extremfall länger als 2 s) und sie können die Art des Klangbildes variieren, zum Beispiel indem sie ihren Körper auf andere Arbeiter oder Nestoberflächen drücken [31,55,56,64 ]. In Schwärmen lösen längere Klänge die Vorbereitung zum Abheben aus [31,64], aber es ist nicht bekannt, wie Arbeiter auf lange Tonaussendungen in Nestern reagieren.


Eine Erklärung der Fußnoten und viele Bilder befinden sich in der Originalquelle.

Erhöhtes Risiko einer SARS-CoV-2-Reinfektion im Zusammenhang mit dem Auftreten der Omicron-Variante in Südafrika

Ziel: Untersuchung, ob sich das SARS-CoV-2-Reinfektionsrisiko in Südafrika im Zusammenhang mit der Entstehung der Beta-, Delta- und Omicron-Varianten im Laufe der Zeit verändert hat Design: Retrospektive Analyse von routinemäßigen epidemiologischen Überwachungsdaten. Daten basierend auf SARS-CoV-2 mit Probeneingangsdatum zwischen dem 04. März 2020 und dem 27. November 2021, gesammelt durch das südafrikanische National Notifiable Medical Conditions Surveillance System.


Teilnehmer: 2.796.982 Personen mit laborbestätigtem SARS-CoV-2, die mindestens 90 Tage lang vordem 27. November 2021 ein positives Testergebnis hatten. Bei Personen mit aufeinanderfolgenden positiven Tests im Abstand von mindestens 90 Tagen wurde eine Reinfektion vermutet. Hauptzielparameter: Häufigkeit vermuteter Reinfektionen im Laufe der Zeit; Vergleich der Reinfektionsraten mit der Erwartung unter einem Nullmodell (Ansatz 1); empirische Schätzungen der zeitlich veränderlichen Infektions- und Reinfektionsgefahren während der Epidemie (Ansatz 2) Ergebnisse: 35.670 vermutete Reinfektionen wurden bei 2.796.982 Personen mit laborbestätigtem SARS-CoV-2 identifiziert, die mindestens 90 Tage zuvor ein positives Testergebnis zwischen dem 27. November 2021 hatten.


Die Zahl der bis zum Ende der dritten Welle beobachteten Reinfektionen entsprach dem Nullmodell einer unveränderten Reinfektionsgefahr (Ansatz 1). Obwohl nach Einführung sowohl der Beta- als auch der Delta-Variante ein Anstieg des Primärinfektionsrisikos beobachtet wurde, wurde kein entsprechender Anstieg des Reinfektionsrisikos beobachtet (Ansatz 2). Entgegen der Erwartung war die geschätzte Hazard Ratio für die Reinfektion gegenüber der Primärinfektion während der von den Beta- und Delta-Varianten getriebenen Wellen niedriger als für die erste Welle (relative Gefahrenquote für Welle 2 im Vergleich mit Welle 1: 0,75 (CI95: 0,59 – 0,97);


für Welle 3 gegenüber Welle 1:0,71 (KI95: 0,56–0,92). Im Gegensatz dazu wurde die jüngste Verbreitung der Omicron-Variante mit einer Verringerung der Gefahr einer Primärinfektion und einer Zunahme der Gefahr einer erneuten Infektion in Verbindung gebracht. Die geschätzte Gefahrenquote für die Reinfektion gegenüber der Primärinfektion für den Zeitraum vom 1. November 2021 bis 27. November 2021 gegenüber Welle 1 betrug 2,39 (KI95: 1,88-3,11).
Schlußfolgerung: Belege auf Bevölkerungsebene deuten darauf hin, daß die Omicron-Variante mit einer erheblichen Fähigkeit verbunden ist, sich der Immunität vor einer früheren Infektion zu entziehen. Im Gegensatz dazu gibt es keine bevölkerungsweiten epidemiologischen Beweise für eine Immunflucht im Zusammenhang mit den Beta- oder Delta-Varianten. Dieses Ergebnis hat wichtige Auswirkungen auf die Planung des öffentlichen Gesundheitswesens, insbesondere in Ländern wie Südafrika mit hohen Immunitätsraten nach einer früheren Infektion.

Es bleiben dringende Fragen, ob Omicron auch in der Lage ist, eine impfstoffinduzierte Immunität zu umgehen, und die möglichen Auswirkungen einer verringerten Immunität gegenüber Infektionen auf den Schutz vor schweren Krankheiten und Todesfällen.


Alle Autoren haben das einheitliche Offenlegungsformular von ICMJE ausgefüllt. CC und AvG haben in den letzten 36 Monaten Fördermittel von Sanofi Pasteur erhalten. JRCP und KM sind Mitglied des Ministerial Advisory Committee on COVID-19 des South African National Department of Health. Die Autoren haben keine anderen Beziehungen oder Aktivitäten angegeben, die die eingereichte Arbeit beeinflusst haben könnten.


Finanzierungsnachweis


Diese Arbeit wurde vom South African Department of Science and Innovation und der National Research Foundation und dem Wellcome Trust (Grant Number 221003/Z/20/Z) in Zusammenarbeit mit dem Foreign, Commonwealth and Development Office, Großbritannien, unterstützt.


Papier in Sammlung COVID-19 SARS-CoV-2 Preprints von medRxiv und bioRxiv


Urheberrechte ©
Der Urheberrechtsinhaber für diesen Preprint ist der Autor/Förderer, der medRxiv eine Lizenz zur dauerhaften Anzeige des Preprints erteilt hat. Es wird unter einer CC-BY-NC 4.0 International-Lizenz zur Verfügung gestellt.

Originalquelle


Es steht Ihnen frei:
Teilen – Kopieren und verteilen Sie das Material in einem beliebigen Medium oder Format
Anpassen – remixen, transformieren und auf dem Material aufbauen
Der Lizenzgeber kann diese Freiheiten nicht widerrufen, solange Sie die Lizenzbedingungen einhalten.

Technion-Forscher entdecken effiziente Methode zur Herstellung von Wasserstoffkraftstoff

Technion-Forscher haben ein neues System entwickelt, um mit wenig Energie und kostengünstigen Materialien Wasserstoff aus Wasser herzustellen

Die Wasserelektrolyse ist eine einfache Möglichkeit, Wasserstoffgas zu erzeugen. Während Wasserstoff als sauberer, erneuerbarer Kraftstoff gilt, erfordert eine effiziente Elektrolyse ein hohes elektrisches Potenzial, einen hohen pH-Wert und in den meisten Fällen Katalysatoren auf Basis von Ruthenium und anderen teuren Metallen. Aufgrund des inhärenten Versprechens von Wasserstoff streben viele Forschungsgruppen an, Elektrolysetechnologien zu entwickeln, die es ermöglichen, Wasserstoffkraftstoff bei einem niedrigen elektrischen Potenzial, bei einem pH-Wert zwischen 7-9 und mit Katalysatoren auf Basis verfügbarer und kostengünstiger Metalle wie z Kupfer, Mangan und Kobalt herzustellen.

Aktuell haben Technion-Forscher ein einzigartiges System zur Herstellung von Wasserstoff aus Wasser mit wenig Energie und kostengünstigen Materialien entwickelt, wie das Journal of the American Chemical Society kürzlich berichtete. Es ist das schnellste bisher beschriebene System seiner Art, das mit verfügbaren Metall-(Kupfer-)Katalysatoren arbeitet. Die Forschung wurde von Professor Galia Maayan, Leiterin des Labors für biomimetische Chemie an der Fakultät für Chemie in Schulich, zusammen mit dem Doktoranden Guilin Ruan geleitet.

Die Forscher entwarfen und entwickelten ein homogenes Elektrolysesystem, also ein System, bei dem der Katalysator in Wasser löslich ist, sodass sich alle Komponenten des Systems im gleichen Medium befinden. Das innovative und originelle System basiert auf (1) Kupferionen; (2) ein peptidähnliches Oligomer (kleines Molekül), das das Kupfer bindet und seine Stabilität beibehält; und (3) eine Borat genannte Verbindung, deren Funktion es ist, den pH-Wert innerhalb eines begrenzten Bereiches zu halten. Die wichtigste Entdeckung in dieser Studie ist der einzigartige Mechanismus, den die Forscher entdeckten und demonstrierten: Die Boratverbindung hilft, das Metallzentrum zu stabilisieren und beteiligt sich an dem Prozess, sodass es katalysiert.

In früheren Studien zeigte die Forschungsgruppe die Wirksamkeit der Verwendung peptidähnlicher Oligomere zur Stabilisierung von Metallionen, die Sauerstoff ausgesetzt sind – eine Exposition, die sie in Abwesenheit des Oligomers oxidieren und den Katalysator abbauen kann. Jüngst berichten die Forscher über den Erfolg, ein sehr effizientes und schnelles Elektrolysesystem zu schaffen. Das stabile System oxidiert das Wasser unter den gleichen gewünschten Bedingungen zu Wasserstoff und Sauerstoff: niedriges elektrisches Potenzial, pH-Wert nahe 9 und kostengünstige Katalysatoren.

Inspiriert wurde das System laut Prof. Maayan von Enzymen (biologischen Katalysatoren), die die Peptidkette des Proteins nutzen, um das metallische Zentrum zu stabilisieren, und von natürlichen energetischen Prozessen wie der Photosynthese, die von Einheiten angetrieben werden, die Sonnenenergie nutzen, um Elektronen und Protonen zu transportieren .

Die Forschung wurde von der Israel Science Foundation (ISF) und dem Nancy and Stephen Grand Technion Energy Program unterstützt.

Quelle

Forschungsbericht

Frühe Landpflanzen entwickelten sich aus Süßwasseralgen, zeigen Fossilien

Die Ergebnisse schließen eine 25 Millionen Jahre lange Lücke zwischen der „molekularen Uhr“ und dem Fossilienbestand von Pflanzen

Chestnut Hill, Massachusetts (12.08.2021) — Laut eines neuen Berichts von Forschern in der Zeitschrift „Science“, die sporenähnliche Mikrofossilien mit Eigenschaften, die unser konventionelles Verständnis der Evolution von Landpflanzen in Frage stellen und neu untersucht haben, muß die Welt möglicherweise anders über Pflanzen nachdenken.

Gefunden in Gesteinsproben, die vor mehr als 60 Jahren in Australien gefunden wurden, füllen die Mikrofossilien aus dem unteren Ordovizium vor etwa 480 Millionen Jahren eine Wissenslücke von etwa 25 Millionen Jahren, indem sie die molekulare Uhr – oder das Tempo der Evolution – mit dem fossilen Sporennachweis – den physischen Beweisen für das frühe Pflanzenleben, die Wissenschaftler im Laufe der Jahre gesammelt haben in Einklang bringen.

Diese Versöhnung unterstützt ein evolutionäres Entwicklungsmodell, das den Ursprung von Pflanzen mit Süßwassergrünalgen oder Charophytenalgen verbindet, sagte Paul Strother, Paläobotaniker des Boston College, ein Co-Autor des neuen Berichts. Das „evo-devo“-Modell postuliert ein differenzierteres Verständnis der Pflanzenevolution im Laufe der Zeit, von der einfachen Zellteilung bis zu den ersten embryonalen Stadien, anstatt große Sprünge von einer Art zur anderen.

„Wir fanden eine Mischung aus Fossilien, die ältere, problematischere sporenähnliche Mikrofossilien mit jüngeren Sporen verbinden, die eindeutig von Landpflanzen stammen“, sagte Strother. „Dies hilft, den fossilen Sporenbestand mit den Daten der molekularen Uhr in Einklang zu bringen, wenn wir die Entstehung von Landpflanzen als einen langfristigen Prozess betrachten, der die Evolution der Embryonalentwicklung beinhaltet.“

Der Fossilienbestand bewahrt direkte Beweise für den evolutionären Zusammenbau des regulatorischen und Entwicklungsgenoms der Pflanze, fügte Strother hinzu. Dieser Prozess beginnt mit der Evolution der Pflanzenspore und führt zur Entstehung von Pflanzengeweben, Organen und schließlich makroskopischen, vollständigen Pflanzen – vielleicht ein bisschen ähnlich wie heute lebende Moose.

„Wenn wir Sporen als einen wichtigen Bestandteil der Evolution von Landpflanzen betrachten, gibt es keine Lücke mehr im Fossilienbestand zwischen molekularer Datierung und fossiler Gewinnung“, sagte Strother. Ohne diese Lücke „haben wir ein viel klareres Bild von einem ganz neuen Evolutionsschritt: von der einfachen Zellularität zur komplexen Vielzelligkeit.“

Infolgedessen müssen Forscher und die Öffentlichkeit möglicherweise überdenken, wie sie den Ursprung von Landpflanzen sehen – diesen entscheidenden Schritt des Lebens vom Wasser zum Land, sagte Strother.

„Wir müssen uns davon lösen, den Ursprung von Landpflanzen als eine Singularität in der Zeit zu betrachten, und stattdessen den Fossilienbestand in ein Evo-Devo-Modell der Genommontage über Millionen von Jahren während des Paläozoikums integrieren – insbesondere zwischen dem Kambrium und dem Devon Spaltungen innerhalb dieser Ära“, sagte Strother. „Dies erfordert eine ernsthafte Neuinterpretation problematischer Fossilien, die zuvor als Pilze und nicht als Pflanzen interpretiert wurden.“

Strother und Co-Autor Clinton Foster von der Australian National University wollten einfach eine Ansammlung sporenähnlicher Mikrofossilien aus einer Ablagerung aus dem frühen Ordovizium vor etwa 480 Millionen Jahren beschreiben. Dieses Material füllt eine Lücke von etwa 25 Millionen Jahren im fossilen Sporenbestand und verbindet gut akzeptierte jüngere Pflanzensporen mit älteren, problematischeren Formen, sagte Strother.

Strother und Foster untersuchten Populationen fossiler Sporen, die aus einem 1958 im Norden Westaustraliens gebohrten Gesteinskern gewonnen wurden. Diese Mikrofossilien bestehen aus hochresistenten organischen Verbindungen in ihren Zellwänden, die strukturell Vergraben und Versteinerung überleben können. Sie wurden am Boston College und an der Research School of Earth Sciences der ANU unter Verwendung von Standardlichtmikroskopie untersucht.

„Wir verwenden fossile Sporen, die aus Gesteinsbohrkernen gewonnen wurden, um eine Evolutionsgeschichte von Pflanzen zu konstruieren, die bis zum Ursprung der Pflanzen von ihren Algenvorfahren zurückreicht“, sagte Strother. „Wir haben eine unabhängige Alterskontrolle dieser Gesteinsproben, also untersuchen wir die Evolution, indem wir die Veränderungen der Sporenarten untersuchen, die im Laufe der Zeit auftreten.“

Molekularbiologen betrachten auch die Evolutionsgeschichte im Laufe der Zeit, indem sie Gene aus lebenden Pflanzen verwenden, um den Zeitpunkt des Pflanzenursprungs mithilfe von „molekularen Uhren“ abzuschätzen – eine Messung der evolutionären Divergenz basierend auf der durchschnittlichen Rate, mit der sich Mutationen im Genom einer Art ansammeln.

Es gibt jedoch riesige zeitliche Diskrepanzen, die bis zu zig Millionen Jahre betragen können, zwischen direkten fossilen Daten und molekularen Uhrendaten, sagte Strother. Darüber hinaus gibt es ähnliche Zeitabstände zwischen den ältesten Sporen und dem ersten Auftreten tatsächlicher ganzer Pflanzen.

Diese Lücken führten zu Hypothesen über einen „fehlenden Fossilienbestand“ der frühesten Landpflanzen, sagte Strother.

„Unsere Arbeit versucht, einige dieser Fragen zu lösen, indem wir den fossilen Sporenbestand in ein evolutionäres Entwicklungsmodell der pflanzlichen Herkunft von Algenvorfahren integrieren“, sagte Strother.

Quelle

Aufstrebendes Vibrionen-Risiko in hohen Breiten als Reaktion auf die Erwärmung der Meere

Es herrscht zunehmend Besorgnis in Bezug auf die Rolle des Klimawandels bei der Beschleunigung der Verbreitung wasserbasierter bakterieller Infektionskrankheiten. Hier sehen Forscher Zusammenhänge zwischen beobachteten Veränderungen der Umwelt im Ostseeraum und dem jüngsten Auftreten von Vibrio-Infektionen und auch Prognosen zukünftiger Szenarien der Gefahr von Infektionen in Korrespondenz mit prognostizierten Erwärmungstrendstrends.

Bei der Untersuchung von Datensätzen der langfristigen Temperatur der Meeresoberfläche fanden die Wissenschaftler heraus, daß die Ostsee sich mit einer beispiellosen Geschwindigkeit erwärmt. Die Wassertemperaturtrends von 1982 bis 2010 zeigen ein Erwärmungsmuster von 0,063-0,078° C jährlich (6,3 bis 7,8° C pro Jahrhundert), die zusammen mit den jüngsten Spitzenwerten in der Geschichte der Messungen für diese Region ihresgleichen suchen. Diese Erwärmungsmuster treten in Zusammenhang mit dem unerwartet häufigen Auftreten von Vibrio-Infektionen im Norden Europas, in vielen Schwerpunktenn im gesamten Ostseeraum auf. Die Anzahl und Verteilung der Fälle korrespondiert eng mit den zeitlichen und räumlichen Spitzen der Oberflächentemperaturen der Meeresoberfläche. Dies ist einer der ersten empirischen Beweise dafür, daß der anthropogene (menschengemachte) Klimawandel die Entstehung von vibrionenbasierten Krankheiten in den gemäßigten Zonen durch die Auswirkungen auf die ansäßigen bakteriellen Gemeinschaften erhöht, was mit sich bringt, daß dieser Prozess eine Neugestaltung der Verbreitung von Infektionskrankheiten in globalem Maßstab zur Folge hat.

Quelle

In Anbetracht dieses seltsamen „Sommers“, man beachte das Wetter hierzulande, im Mittelmeerraum und jüngst in China, ist eine Leugnung des Klimawandels wissenschaftlich unhaltbar.

Forscher entwickeln neues Verfahren zur Gewinnung von Zahnseide

Einem Forscherteam unter Federführung des Biologen Dr. Lepidoptera, Uni Jesteborough, ist unter Verwendung genmanipulierter Seidenraupen, Bombyx mori, die Herstellung von PTFE-ummantelten Spinnfäden gelungen. Um zu den gewünschten Materialeigeschaften zu gelangen war zunächst eine Nährlösung auf der Basis halogenierter anorganischer Salze synthetisiert worden. Da Seidenraupen üblicher Weise ausschließlich die Blätter des Maulbeerbaumes konsumieren, war die Suche nach einem Ersatzfutter aufwendig und zeitintensiv.

Es gelang schließlich, ausgewählte Pflanzen der Birkenfeige (Ficus benjamina) zur Aufnahme der fluorierten Nährlösung anzuregen. Hierzu erfolgte eine Begasung der Pflanzen mit dem aus der Ananasreifung bekannten Ethin. Die so vorbereiteten Birkenfeigen bildeten Blätter, die zum einen von den Seidenraupen als Nahrung akzeptiert wurden, und zum anderen die notwendigen Moleküle zur späteren Seidenfadenummantelung enthielten.

Nach dem Verzehr adäquater Mengen an Ficus-Blättern begannen sich die Seidenraupen einzuspinnen und zu verpuppen. Während dieses Vorgangers war ein leichter Fluorgeruch wahrzunehmen. Nach Abkochen der Raupen konnte der Zahnseidefaden abgehaspelt werden. Die Forscher waren von der Leichtgängigkeit der Fäden in den Zahnzwischenräumen und der Zugfestigkeit des Filaments angenehm überrascht.

Offenbar führte die Genmanipulation der Spinndrüsen an Bombyx mori zu einer vollkommen unüblichen Struktur der Seidenfäden. Die Fluorierung der Nährsalzlösung zur Düngung der Birkenfeigen bewirkte beim Verspinnen die charakteristische PTFE-Ummantelung der Fäden.

Die kompletten Forschungsergebnisse sind im Wissenschaftsmagazin „Floss“ nachzulesen.

Klebende Füße der Baumfrösche verfügen über einen Selbstreinigungsmechanismus

Baumfrösche (Litoria caerulea) verfügen über speziell ausgerüstete selbstreinigende klebrige Füße, die praktische Anwendungen im medizinischen Bereich ermöglichen könnten. Die Füße von Baumfröschen weisen ein Design auf, daß sich für die selbsttätige Reinigung von klebrigen Oberflächen in der Praxis als nützlich erweisen und zu einer ganzen Palette von Produkten vor allem in verschmutzenden Umgebungen führen könnte – medizinische Bandagen, leistungsfähige Reifen und sogar dauerhafter Klebstoff“, sagt Forscher Niall Crawford von der Universität von Glasgow, die diese Arbeit bei der jährlich stattfindenden Konferenz der Gesellschaft für Experimentelle Biologie in Glasgow am 3. Juli 2011 präsentierte.

Baumfrösche haben Haftpads auf ihren Zehen, die sie verwenden, um sich in schwierigen Situationen anzuklammern, aber bis jetzt war es unklar, wie diese Pads vor dem Anheften von Schmutz schützen. „Interessanterweise sind es die gleichen Faktoren, die den Baumfröschen das festklammern ermöglichen und auch für die Reinigung der klebrigen Oberfläche sorgen. Um ihre Füße kleben die Frösche Schleim, sie können dann ihre Haftung erhöhen, indem sie ihre Füße gegen die Oberfläche pressen, um die Reibung zu erhöhen. Wir haben nun gezeigt, daß der Schleim in Verbindung mit der Bewegung den Fröschen ermöglicht, die Füße während des Laufens zu reinigen.“, sagte Crawford.

Die Forscher platzierten die Frösche auf einer rotierenden Plattform und maßen den Winkel, von dem an die Frösche den Halt verloren. Als das Experiment mit Fröschen, deren Füße mit Staub verunreinigt waren, wiederholt wurde, verloren sie zunächst den Grip, aber wenn sie ein paar Schritte machten, nahmen ihre Haftkräfte wieder zu. „Wenn sich die Frösche nicht bewegen, werden die Haftkräfte wieder viel geringer.“, sagt Crawford. Dies zeigt, daß nur ein Schritt den Fröschen ermöglicht, ihre Füße zu säubern und die Wiederherstellung ihrer Haftfähigkeit zu ermöglichen.“

Baumfrösche haben winzige sechseckige Muster auf ihren Füßen, von denen einige Teile der Sohle in Kontakt mit der Oberfläche bleiben und Reibung erzeugen, während die Kanäle zwischen den Waben ermöglichen, daß sich der Schleim in der gesamten Sohle ausbreiten kann. Dieser Schleim erlaubt den Fröschen, sowohl an der Oberfläche kleben zu bleiben, als auch den Schmutz fort zu führen. Wenn dies in ein von Menschen gemachtes Design umgesetzt werden kann, könnte es zu der Herstellung eines wieder verwendbaren, effizienten Klebstoffes führen.

Quelle